0
Research Letters |

Real-time Ophthalmoscopic Findings of Intraophthalmic Artery Chemotherapy in Retinoblastoma FREE

Nicole Fallaha, MD; Josee Dubois, MD; Anne Sophie Carret, MD; Sonia A. Callejo, MD; Patrick Hamel, MD; Rosanne Superstein, MD
[+] Author Affiliations

Author Affiliations: Departments of Ophthalmology (Drs Fallaha, Callejo, Hamel, and Superstein), Imaging (Dr Dubois), and Hematology Oncology (Dr Carret), Centre Hospitalier Universitaire Sainte-Justine Hospital, University of Montreal, and Hematology-Oncology Division, Department of Pediatrics (Dr Carret) and Department of Ophthalmology (Drs Callejo, Hamel, and Superstein), McGill University Health Center, Montreal, Quebec, Canada.


Arch Ophthalmol. 2012;130(8):1075-1077. doi:10.1001/archophthalmol.2012.180.
Text Size: A A A
Published online

Superselective intraophthalmic artery chemotherapy (SSIOAC) has become increasingly popular as a treatment for retinoblastoma. We describe the real-time ophthalmic findings of SSIOAC in a 5-month-old baby treated for bilateral disease.

After obtaining informed consent, SSIOAC was performed under general anesthesia. The right femoral artery was accessed using a Cathlon 24-gauge needle. A 0.018-inch access guidewire was passed through the needle and the needle was removed. A 4F access sheath was installed and attached to a heparin saline flush system. Heparin (100 IU/kg) was administered. A coaxial system was used. The guide catheter was a 4F glidecath (Terumo Europe NV). A straight Marathon microcatheter (0.51 mm; 1.5F at the distal tip; ev3 Neurovascular) was advanced through the guiding catheter right to the ostium of the ophthalmic artery. Selective angiography of the ophthalmic artery was performed. Every 5 minutes, the position of the catheter was checked under fluoroscopy. The infusion consisted of 2.5 mg of melphalan diluted in 30 mL of saline at a rate of 1 mL/min for 30 minutes.

A Retcam 1300 pediatric lens (Clarity Medical Systems) was used to take serial fundus photographs and videos every 4 minutes. The frequency of the imaging was adjusted according to the findings.

During the infusion, there was visible intermittent pallor of the optic nerve and narrowing and blanching of the retinal vessels (Figure 1B). The infusion was interrupted and immediate reperfusion was noticed, allowing for completion of the treatment (Figure 1C). No areas of choroidal ischemia or retinal precipitates were noted.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 1. Real-time ophthalmoscopic evaluation of the left eye. A, Pretreatment photograph. B, Visible pallor of the optic nerve and narrowing and blanching of the retinal vessels were noticed 24 minutes into the infusion. C, Immediate reperfusion was noticed when the injection was stopped, allowing for completion of the treatment.

Sixteen minutes into the infusion, whitening of the nasal choroidal vasculature was noticed (Figure 2B). These changes were followed by severe generalized vasoconstriction of the retinal arteries and veins that progressed to total obscuration of the retinal arteries with no visible blood flow. The retinal arteries then completely whitened, consistent with intravascular retinal precipitates (Figure 2C). The infusion was stopped 1 minute later. The retinal and choroidal circulation remained compromised for an additional 3.5 minutes. The procedure was aborted after injecting 1.3 mg of melphalan in 15 mL of saline. Findings on fluorescein angiography performed 1 day later were unremarkable.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 2. Real-time ophthalmoscopic evaluation of the right eye. A, Pretreatment photograph. B, Sixteen minutes into the infusion, whitening of the nasal choroidal vasculature was noticed. The retinal blood flow appears preserved. However, the nasal tumor vessels of the lesion located at the optic nerve head are less evident, leading to whitening of the tumor. C, Diffuse whitening of the large and medium-sized retinal arteries, consistent with intravascular retinal precipitates, was noticed at 16 minutes 23 seconds. The intravascular precipitates persisted for approximately 1 minute 20 seconds. D, Photograph at 4.5 minutes, when blood flow was restored. Note the restoration of a reddish hue of the optic nerve tumor, raising the question of possible tumor ischemia.

Signs of tumor regression were noticed in both eyes 1 week later. There were no systemic complications.

Transient acute chorioretinal ischemia can be detected during SSIOAC with melphalan. Isolated diffuse retinal vasculature blanching was immediately reversed, allowing for completion of treatment in the left eye. Vascular changes affecting both the retina and choroid in the right eye required additional time to recover and caused us to abort our treatment. We do not yet know the clinical significance of these ischemic episodes. Vasodilators such as nitroglycerin may prove useful. Also, the addition of real-time ophthalmoscopic observation into the current treatment protocol may alert the physician to tailor treatment to prevent acute toxic effects. We observed a favorable outcome of the tumor in the right eye despite a lower dose of chemotherapy. We can speculate that this effect may be either a direct response to melphalan or an indirect response to transient ischemia.

Our results are similar to those that Wilson et al1 found in a nonhuman primate model. We too had pulsatile optic nerve and choroidal blanching, retinal artery narrowing, and retinal artery precipitates. Other reported vascular complications from SSIOAC include avascular retinopathy,2 microemboli to retina and choroid, vitreous hemorrhage,3 ophthalmic artery stenosis,4 concomitant central or branch retinal artery occlusion, and choroidal atrophy.4

To our knowledge, we are the first to describe transient chorioretinal ischemia during SSIOAC with melphalan in real time. Direct visualization of the fundus during the infusion may help to recognize this adverse effect and adjust the treatment accordingly. The early and long-term adverse effects of SSIOAC on the retinal and choroidal vasculature should be investigated.

Correspondence: Dr Superstein, Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine Hospital, University of Montreal, 3175 Cote-Sainte-Catherine, Montreal, QC H3T 1C5, Canada (rosanne.superstein@mcgill.ca).

Financial Disclosure: None reported.

Wilson MW, Jackson JS, Phillips BX,  et al.  Real-time ophthalmoscopic findings of superselective intraophthalmic artery chemotherapy in a nonhuman primate model.  Arch Ophthalmol. 2011;129(11):1458-1465
PubMed   |  Link to Article
Gobin YP, Dunkel IJ, Marr BP, Brodie SE, Abramson DH. Intra-arterial chemotherapy for the management of retinoblastoma: four-year experience.  Arch Ophthalmol. 2011;129(6):732-737
PubMed   |  Link to Article
Vajzovic LM, Murray TG, Aziz-Sultan MA,  et al.  Supraselective intra-arterial chemotherapy: evaluation of treatment-related complications in advanced retinoblastoma.  Clin Ophthalmol. 2011;5:171-176
PubMed
Shields CL, Bianciotto CG, Jabbour P,  et al.  Intra-arterial chemotherapy for retinoblastoma: report No. 2, treatment complications.  Arch Ophthalmol. 2011;129(11):1407-1415
PubMed   |  Link to Article

Figures

Place holder to copy figure label and caption
Graphic Jump Location

Figure 1. Real-time ophthalmoscopic evaluation of the left eye. A, Pretreatment photograph. B, Visible pallor of the optic nerve and narrowing and blanching of the retinal vessels were noticed 24 minutes into the infusion. C, Immediate reperfusion was noticed when the injection was stopped, allowing for completion of the treatment.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 2. Real-time ophthalmoscopic evaluation of the right eye. A, Pretreatment photograph. B, Sixteen minutes into the infusion, whitening of the nasal choroidal vasculature was noticed. The retinal blood flow appears preserved. However, the nasal tumor vessels of the lesion located at the optic nerve head are less evident, leading to whitening of the tumor. C, Diffuse whitening of the large and medium-sized retinal arteries, consistent with intravascular retinal precipitates, was noticed at 16 minutes 23 seconds. The intravascular precipitates persisted for approximately 1 minute 20 seconds. D, Photograph at 4.5 minutes, when blood flow was restored. Note the restoration of a reddish hue of the optic nerve tumor, raising the question of possible tumor ischemia.

Tables

References

Wilson MW, Jackson JS, Phillips BX,  et al.  Real-time ophthalmoscopic findings of superselective intraophthalmic artery chemotherapy in a nonhuman primate model.  Arch Ophthalmol. 2011;129(11):1458-1465
PubMed   |  Link to Article
Gobin YP, Dunkel IJ, Marr BP, Brodie SE, Abramson DH. Intra-arterial chemotherapy for the management of retinoblastoma: four-year experience.  Arch Ophthalmol. 2011;129(6):732-737
PubMed   |  Link to Article
Vajzovic LM, Murray TG, Aziz-Sultan MA,  et al.  Supraselective intra-arterial chemotherapy: evaluation of treatment-related complications in advanced retinoblastoma.  Clin Ophthalmol. 2011;5:171-176
PubMed
Shields CL, Bianciotto CG, Jabbour P,  et al.  Intra-arterial chemotherapy for retinoblastoma: report No. 2, treatment complications.  Arch Ophthalmol. 2011;129(11):1407-1415
PubMed   |  Link to Article

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Topics
PubMed Articles