0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Research Letters |

Myopic Peripapillary Sinkhole: Prolapse of Retinal Nerve Fiber Layer and Posterior Vitreous Into a Sclerochoroidal Hollow Causing Peripapillary Choroidal Thickening and Cavitation FREE

Ronald L. Fellman, MD; Davinder S. Grover, MD, MPH
[+] Author Affiliations

Author Affiliations: Glaucoma Associates of Texas, Dallas.


Arch Ophthalmol. 2012;130(9):1220-1221. doi:10.1001/archophthalmol.2012.441.
Text Size: A A A
Published online

The pathogenesis of peripapillary choroidal thickening and cavitation, a yellow-orange, dome-shaped lesion inferotemporal to the myopic conus, is unknown.1,2 Some investigators believe the anomaly is congenital in origin owing to the presence of a cleftlike communication between the retina and choroid with vitreous prolapse and anomalous vessels.3 However, we observed a case that developed similar findings but due to a different cause, the gradual sinking of peripapillary retinal tissue into a sclerochoroidal cavity associated with retinal hole formation and posterior vitreous prolapse, newly termed myopic peripapillary sinkhole.

A 63-year-old myopic man was first evaluated in 1984 for pigment dispersion syndrome and suspicious optic discs. Owing to the appearance of the disc and a visual field defect in his left eye, topical antiglaucoma therapy was initiated with betaxolol hydrochloride, 0.25%, twice daily and the intraocular pressure remained between 13 and 16 mm Hg over several decades. Serial disc photographs in the left eye between 1984 (baseline) and 1994 revealed the gradual collapse and ultimate disappearance of a peripapillary retinal vessel associated with an enlarging retinal hole, adjacent disc hemorrhages, and the development of a yellow-orange peripapillary lesion (Figure 1).

Place holder to copy figure label and caption
Graphic Jump Location

Figure 1. The evolution of a myopic peripapillary sinkhole associated with peripapillary choroidal thickening and cavitation. A, Baseline disc photograph of the left eye in 1984. B, The 1987 disc photograph reveals the telltale sign of the sinkhole process, a gradually sinking peripapillary vessel (asterisk). Arrow indicates the companion atrophic hole in the retinal nerve fiber layer. C, A nearby disc hemorrhage (arrow) is seen in the 1988 photograph. D, The crescent-shaped yellow-orange lesion (arrows) is peripapillary choroidal thickening and cavitation, recently renamed by Freund et al.3

Results of a 3-dimensional topographic analysis of the peripapillary tissue (Figure 2) were normal in the right eye. However, the left eye revealed a broad and deep inferotemporal peripapillary depression. Additional views showed collapsed retinal tissue with hole formation and an underlying optically empty space, likely representing vitreous prolapse into a sclerochoroidal cavity (video).

Place holder to copy figure label and caption
Graphic Jump Location

Figure 2. Cirrus high-definition optical coherence tomography 3 (Carl Zeiss Meditec) analysis of a myopic peripapillary sinkhole. A, Topographical 3-dimensional analysis of the right eye shows normal surface peripapillary anatomy with the upper and lower pole of the disc indicated by arrows. B, The curved arrow in the left eye indicates a deep inferotemporal peripapillary depression; the optic nerve poles are located between the straight arrows. The depression may also extend inferiorly between the arrowheads, indicating localized loss of the retinal nerve fiber layer. C, Cross-sectional analysis reveals prolapsed retinal nerve fiber layer tissue (arrows), between which is the retinal hole. Diamond indicates the optically empty sclerochoroidal cavity. The inferior margin of the disc (lower arrowhead) appears to be on a much lower plane than the rest of the disc margin (upper arrowhead). D, The enhanced choroidal view of the left eye reveals the dark area below the disc (arrow), an area with loss of reflectivity, that likely represents prolapsed liquid vitreous. E, Horizontal raster line analysis through the inferotemporal sinkhole. The broad depression shows a hole (arrow) in the prolapsed tissue that communicates to the underlying sclerochoroidal cavity occupied by an optically empty substance, presumably liquid vitreous.

We believe that prior to the development of myopia, the retinal nerve fiber layer is in contact with underlying sclera.4 We postulate that as the eye elongates, ectatic sclera pulls away from the overlying retina, creating a hollow or cavern.5 The roof of the cavern (the retinal nerve fiber layer) gradually collapses, possibly due to excessive overlying pressure, weakened underlying sclerochoroidal architecture, and/or malnutrition from absence of the choroid in the conus.6 As the retinal nerve fiber layer and accompanying vessels collapse (a telltale sign of the sinkhole), axons and retinal nerve fiber layer capillaries kink, with resulting visual field loss, disc hemorrhages, and retinal hole formation. At a crucial point, the retinal hole facilitates the escape of liquid vitreous into the underlying ectatic sclerochoroidal hollow, completing the sinkhole process. We observed 3 other cases of peripapillary thickening and cavitation that manifested in patients older than 55 years. Although we were not able to witness the development of the sinkhole, we suspect that we missed the initial retinal prolapse phase and witnessed only the end of the sinkhole process.

The definition of a sinkhole is a depression in the ground communicating with a subterranean passage and formed by collapse of a cavern roof. Our patient's series of events seems to resemble this natural phenomenon. The entity known as peripapillary thickening and cavitation may be part of a constellation of acquired peripapillary findings as evidenced by the chance long-term observation of a series of events culminating in a finding most accurately described as a myopic peripapillary sinkhole.

Correspondence: Dr Fellman, Glaucoma Associates of Texas, 10740 N Central Expressway, Ste 300, Dallas, TX 75231 (rfellman@glaucomaassociates.com).

Financial Disclosure: None reported.

Toranzo J, Cohen SY, Erginay A, Gaudric A. Peripapillary intrachoroidal cavitation in myopia.  Am J Ophthalmol. 2005;140(4):731-732
PubMed   |  Link to Article
Shimada N, Ohno-Matsui K, Nishimuta A, Tokoro T, Mochizuki M. Peripapillary changes detected by optical coherence tomography in eyes with high myopia.  Ophthalmology. 2007;114(11):2070-2076
PubMed
Freund KB, Mukkamala SK, Cooney MJ. Peripapillary choroidal thickening and cavitation.  Arch Ophthalmol. 2011;129(8):1096-1097
PubMed
Nakazawa M, Kurotaki J, Ruike H. Longterm findings in peripapillary crescent formation in eyes with mild or moderate myopia.  Acta Ophthalmol. 2008;86(6):626-629
PubMed
Moriyama M, Ohno-Matsui K, Hayashi K,  et al.  Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging.  Ophthalmology. 2011;118(8):1626-1637
PubMed
Doshi A, Kreidl KO, Lombardi L, Sakamoto DK, Singh K. Nonprogressive glaucomatous cupping and visual field abnormalities in young Chinese males.  Ophthalmology. 2007;114(3):472-479
PubMed

Figures

Place holder to copy figure label and caption
Graphic Jump Location

Figure 1. The evolution of a myopic peripapillary sinkhole associated with peripapillary choroidal thickening and cavitation. A, Baseline disc photograph of the left eye in 1984. B, The 1987 disc photograph reveals the telltale sign of the sinkhole process, a gradually sinking peripapillary vessel (asterisk). Arrow indicates the companion atrophic hole in the retinal nerve fiber layer. C, A nearby disc hemorrhage (arrow) is seen in the 1988 photograph. D, The crescent-shaped yellow-orange lesion (arrows) is peripapillary choroidal thickening and cavitation, recently renamed by Freund et al.3

Place holder to copy figure label and caption
Graphic Jump Location

Figure 2. Cirrus high-definition optical coherence tomography 3 (Carl Zeiss Meditec) analysis of a myopic peripapillary sinkhole. A, Topographical 3-dimensional analysis of the right eye shows normal surface peripapillary anatomy with the upper and lower pole of the disc indicated by arrows. B, The curved arrow in the left eye indicates a deep inferotemporal peripapillary depression; the optic nerve poles are located between the straight arrows. The depression may also extend inferiorly between the arrowheads, indicating localized loss of the retinal nerve fiber layer. C, Cross-sectional analysis reveals prolapsed retinal nerve fiber layer tissue (arrows), between which is the retinal hole. Diamond indicates the optically empty sclerochoroidal cavity. The inferior margin of the disc (lower arrowhead) appears to be on a much lower plane than the rest of the disc margin (upper arrowhead). D, The enhanced choroidal view of the left eye reveals the dark area below the disc (arrow), an area with loss of reflectivity, that likely represents prolapsed liquid vitreous. E, Horizontal raster line analysis through the inferotemporal sinkhole. The broad depression shows a hole (arrow) in the prolapsed tissue that communicates to the underlying sclerochoroidal cavity occupied by an optically empty substance, presumably liquid vitreous.

Tables

References

Toranzo J, Cohen SY, Erginay A, Gaudric A. Peripapillary intrachoroidal cavitation in myopia.  Am J Ophthalmol. 2005;140(4):731-732
PubMed   |  Link to Article
Shimada N, Ohno-Matsui K, Nishimuta A, Tokoro T, Mochizuki M. Peripapillary changes detected by optical coherence tomography in eyes with high myopia.  Ophthalmology. 2007;114(11):2070-2076
PubMed
Freund KB, Mukkamala SK, Cooney MJ. Peripapillary choroidal thickening and cavitation.  Arch Ophthalmol. 2011;129(8):1096-1097
PubMed
Nakazawa M, Kurotaki J, Ruike H. Longterm findings in peripapillary crescent formation in eyes with mild or moderate myopia.  Acta Ophthalmol. 2008;86(6):626-629
PubMed
Moriyama M, Ohno-Matsui K, Hayashi K,  et al.  Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging.  Ophthalmology. 2011;118(8):1626-1637
PubMed
Doshi A, Kreidl KO, Lombardi L, Sakamoto DK, Singh K. Nonprogressive glaucomatous cupping and visual field abnormalities in young Chinese males.  Ophthalmology. 2007;114(3):472-479
PubMed

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging & repositioning the boxes below.

Related Multimedia
Articles Related By Topic
Related Collections
PubMed Articles