0
Small Case Series |

Novel Mutation in BEST1 Associated With Retinoschisis

Ruwan A. Silva, MD; Audina M. Berrocal, MD; Byron L. Lam, MD; Thomas A. Albini, MD
JAMA Ophthalmol. 2013;131(6):794-798. doi:10.1001/jamaophthalmol.2013.2047.
Text Size: A A A
Published online

Extract

Best vitelliform macular dystrophy (BVMD) is caused by mutations in BEST1 (also known as VMD2; OMIM 153700) on the long arm of chromosome 11.1 An array of BEST1 phenotypes have now been characterized, including microcornea, rod-cone dystrophy, early-onset cataract, posterior staphyloma syndrome, vitreoretinochoroidopathy, and adult-onset foveomacular vitelliform dystrophy. BEST1 encodes bestrophin, a 585–amino acid protein with more than 120 described mutations.2 We herein present 2 siblings with bilateral retinoschisis and electroretinography (ERG) consistent with BVMD associated with a novel mutation in BEST1.

Figures in this Article

Sign In to Access Full Content

Don't have Access?

Register and get free email Table of Contents alerts, saved searches, PowerPoint downloads, CME quizzes, and more

Subscribe for full-text access to content from 1998 forward and a host of useful features

Activate your current subscription (AMA members and current subscribers)

Purchase Online Access to this article for 24 hours

First Page Preview

View Large
/>
First page PDF preview

Figures

Place holder to copy figure label and caption
Graphic Jump Location

Figure 1. Fundus photographs of case 1. Montage fundus images of the right (A) and left (B) eyes revealing bilateral yellow foveal clusters within a coarsened vitelliform lesion, well circumscribed by a pigment line and surrounding striae. Additional perifoveal as well as peripheral nasal semicircinate vitelliform lesions are also seen bilaterally.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 2. Optical coherence tomography of case 1. Optical coherence tomography of the right (A) and left (B) eyes with foveal sectioning reveals splitting at the outer plexiform layer. Also seen are symmetric cystic changes in the inner nuclear layer with no retinal break. Additionally, bilateral subfoveal serous retinal detachments are present.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 3. Fluorescein angiography of case 1. Fluorescein angiography of the right (A) and left (B) eyes demonstrates bilateral, heterogeneous, central fluorescein staining that mimics a fluid level. Late hyperfluorescence peripherally, corresponding to vitelliform lesions seen in Figure 1, is also noted.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 4. Electroretinogram of case 1. Scotopic electroretinogram responses of the right (OD) (A) and left (OS) (B) eyes demonstrate a-wave amplitudes of −9.36 and −8.70 μV, b-wave amplitudes of 213.7 and 209 μV, and implicit times of 28 and 27 and 115 and 119 milliseconds, respectively. Maximal combined response of the right and left eyes demonstrates a-wave amplitudes of −123 and −117 μV, b-wave amplitudes of 318 and 276 μV, and implicit times of 18 and 18 and 63 and 64 milliseconds, respectively. Oscillatory potentials of the right and left eyes are −38.8 and −43.5 μV, respectively. Photopic responses of the right and left eyes demonstrate a-wave amplitudes of −25.7 and −33.3 μV, b-wave amplitudes of 145 and 143 μV, and implicit times of 15 and 16 and 34 and 34 milliseconds, respectively. The 30-Hz flicker responses of the right and left eyes demonstrate b-wave amplitudes of 130 and 128 μV with implicit times of 30 and 30 milliseconds, respectively. Div indicates division; F, flicker; and OP, oscillatory potential.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 5. Multifocal electroretinogram of case 1. Multifocal electroretinogram of the control right eye (A), the patient's right eye (B), the control left eye (C), and the patient's left eye (D) demonstrates severe macular dysfunction in both eyes. Both eyes demonstrate central depression of cone responses with P1 amplitudes reduced by approximately 71% of reference values in both eyes.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 6. Electrooculogram of case 1. Electrooculogram of the right (A) and left (B) eyes demonstrates an attenuated light response of the standing potential in both eyes, with an Arden ratio of 1.27 and 1.26 in the right and left eyes, respectively. Downward arrowheads indicate a dark trough and upward arrowheads, a light peak.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 7. Optical coherence tomography of case 2. Optical coherence tomography of the left eye with foveal sectioning reveals retinoschisis with an extensive serous retinal detachment. Also seen is a full-thickness macula hole at the fovea.

Tables

References

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 1

Sign In to Access Full Content

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Topics
PubMed Articles
Jobs
brightcove.createExperiences();