0
Clinical Sciences | Journal Club

Effects of Graft Thickness and Asymmetry on Visual Gain and Aberrations After Descemet Stripping Automated Endothelial Keratoplasty

Mor M. Dickman, MD; Yanny Y. Y. Cheng, MD; Tos T. J. M. Berendschot, PhD; Frank J. H. M. van den Biggelaar, PhD; Rudy M. M. A. Nuijts, MD, PhD
JAMA Ophthalmol. 2013;131(6):737-744. doi:10.1001/jamaophthalmol.2013.73.
Text Size: A A A
Published online

Importance Understanding the contribution of graft thickness and asymmetry to visual gain and posterior corneal (PC) higher-order aberrations (HOAs) may assist optimizing visual outcomes after Descemet stripping automated endothelial keratoplasty (DSAEK).

Objective To investigate the effects of graft thickness and asymmetry on visual gain and aberrations after DSAEK.

Design Retrospective analysis of an interventional case series of eyes undergoing DSAEK. Visual gain was defined as the difference between preoperative and 6-month postoperative best-corrected visual acuity in logMAR equivalents. Graft thickness was measured by anterior-segment optical coherence tomography. Corneal topography and HOAs were measured by Scheimpflug imaging. Raw posterior corneal (PC) elevation data were exported and fitted against a best-fitted sphere, providing a measure of donor lenticule asymmetry. Correlation analysis was performed among visual gain, graft thickness, graft asymmetry, and PC HOAs.

Setting University Eye Clinic Maastricht.

Participants Seventy-nine eyes with corneal endothelial dysfunction.

Exposure All patients underwent DSAEK.

Main Outcomes and Measures Visual gain, graft thickness, graft asymmetry, and PC HOAs.

Results Mean best-corrected visual acuity improved from 0.63 logMAR equivalents preoperatively to 0.25 logMAR equivalents postoperatively (P < .001). Mean (SD) graft thickness of the series was 97 (25) (range, 39-145) μm. After excluding patients with vision-limiting comorbidities, visual gain significantly correlated with graft thickness (r = −0.35 [P = .02]). This correlation was strongest in patients with pseudophakic bullous keratopathy (r = −0.62 [P = .01]). Graft thickness significantly correlated with graft asymmetry in the 4- and 6-mm zones (r = 0.32 [P = .007] and r = 0.32 [P = .006], respectively), which in turn correlated with all but spherical PC HOAs.

Conclusions and Relevance After DSAEK, visual gain shows a significant correlation with graft thickness in patients without vision-limiting comorbidities. This relationship is strongest in patients with pseudophakic bullous keratopathy. Graft thickness also correlates with graft asymmetry, which in turn correlates with all but spherical PC HOAs. These findings may assist surgeons in choosing DSAEK graft thickness and shape, particularly in eyes without vision-limiting comorbidities. Further randomized trials are needed to investigate the relationship between graft thickness and visual gain after DSAEK.

Figures in this Article

Sign In to Access Full Content

Don't have Access?

Register and get free email Table of Contents alerts, saved searches, PowerPoint downloads, CME quizzes, and more

Subscribe for full-text access to content from 1998 forward and a host of useful features

Activate your current subscription (AMA members and current subscribers)

Purchase Online Access to this article for 24 hours

Figures

Place holder to copy figure label and caption
Graphic Jump Location

Figure 1. Measures of posterior corneal (PC) asymmetry. A, Illustrations of the central 4- and 6-mm zones of 134-μm-thick (top) and 49-μm-thick (bottom) grafts. B, Illustrations of PC surface deviation from a best-fitted sphere (top) and a corresponding color-coded elevation subtraction map (bottom) showing positive and negative differences in green and blue, respectively. C, Anterior segment optical coherence tomography images showing 134-μm-thick (left) and 49-μm-thick (right) grafts 6 months postoperatively. D, Color-coded elevation subtraction maps. E, Topography-derived higher-order aberration maps of PC surfaces shown in the corresponding left and right images of C, respectively (derived using a commercially available imaging system [Pentacam; Oculus, Inc]).

Place holder to copy figure label and caption
Graphic Jump Location

Figure 2. Relationship between visual gain and central graft thickness, excluding eyes with visual-limiting comorbidities. After excluding eyes with vision-limiting comorbidities, visual gain correlated with central graft thickness 6 months after Descemet stripping automated endothelial keratoplasty. The solid line represents the linear regression fit across all subjects (Pearson correlation coefficient, r = −0.35 [P = .02]).

Place holder to copy figure label and caption
Graphic Jump Location

Figure 3. Relationship between visual gain and central graft thickness among patients with preoperative pseudophakic bullous keratopathy. Among these patients, visual gain correlated with central graft thickness 6 months after Descemet stripping automated endothelial keratoplasty. The solid line represents the linear regression fit across all subjects (Pearson correlation coefficient, r = −0.62 [P = .01]).

Place holder to copy figure label and caption
Graphic Jump Location

Figure 4. Relationship between posterior corneal (PC) asymmetry and central graft thickness. Posterior corneal asymmetry correlated with graft thickness in the 4-mm (Spearman correlation coefficient, r = 0.32 [P = .007]) and 6-mm (r = 0.32 [P = .006]) central zones 6 months after Descemet stripping automated endothelial keratoplasty. LogRMSE indicates logarithm of the root mean square error.

Place holder to copy figure label and caption
Graphic Jump Location

Figure 5. Relationship between total posterior corneal higher-order aberrations (PC HOAs) and PC asymmetry. Total PC HOAs (third to eighth Zernike order) correlated with PC asymmetry in the 4- (Spearman correlation coefficient, r = 0.66 [P < .001]) and 6-mm (r = 0.47 [P < .001]) zones 6 months after Descemet stripping automated endothelial keratoplasty. LogRMSE indicates logarithm of the root mean square (RMS) error.

Tables

References

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 1

Sign In to Access Full Content

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Topics
PubMed Articles
Jobs
brightcove.createExperiences();