0
Original Investigation | Clinical Sciences

Multimodal Imaging of Occult Macular Dystrophy

Seong Joon Ahn, MD1; Jeeyun Ahn, MD1,2; Kyu Hyung Park, MD1; Se Joon Woo, MD1
[+] Author Affiliations
1Department of Ophthalmology, Seoul National University College of Medicine, and Seoul National University Bundang Hospital, Seongnam, Korea
2Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center (Dr J. Ahn), Seoul, Korea
JAMA Ophthalmol. 2013;131(7):880-890. doi:10.1001/jamaophthalmol.2013.172.
Text Size: A A A
Published online

Importance  The value of imaging modalities remains unknown in occult macular dystrophy (OMD) because they have not been compared in previous studies to our knowledge. Furthermore, because most OMD imaging studies have been limited to a single imaging modality, information about retinal pathologic characteristics simultaneously obtained using multimodal imaging has not been provided for OMD to date.

Objectives  To investigate the clinical and retinal pathologic features of OMD using multimodal imaging and to assess their value in OMD.

Design and Setting  Retrospective imaging study in an academic research setting.

Participants  Forty-six eyes from 25 Korean patients diagnosed as having OMD.

Interventions  Detailed retinal morphologic abnormalities were evaluated using spectral-domain optical coherence tomography (SD-OCT), fundus infrared (IR) reflectance, autofluorescence (AF), and IR-AF imaging.

Main Outcome Measures  Quantitative and qualitative morphologic features were evaluated for their association with visual and electrophysiologic function.

Results  All eyes showed abnormal outer retinal structures in the macula as assessed by SD-OCT. Abnormal round dark macular areas were detected with dark fundus IR reflectance imaging in 36 of 46 eyes (78%). This area corresponded to the area of photoreceptor disruption revealed by SD-OCT and was associated with visual acuity, perimetric results, and multifocal electroretinography responses. In 6 of 18 eyes (33%), IR-AF imaging showed central hypoautofluorescence within normal hyperautofluorescence. In 2 of 18 eyes (11%), fundus AF showed weak hyperautofluorescence. Progression of photoreceptor disruption was identifiable on SD-OCT, and hyporeflectance in IR images became more evident in eyes showing OMD progression.

Conclusions and Relevance  Across multimodal imaging, SD-OCT was most valuable for diagnosis and for determining the outer retinal pathologic features of OMD. Outer retinal pathologic changes manifested different morphologic abnormalities, indicating that OMD is a heterogeneous disease. Fundus IR reflectance imaging is an easy and helpful adjunct for the diagnosis and detection of OMD progression.

Figures in this Article

Sign In to Access Full Content

Don't have Access?

Register and get free email Table of Contents alerts, saved searches, PowerPoint downloads, CME quizzes, and more

Subscribe for full-text access to content from 1998 forward and a host of useful features

Activate your current subscription (AMA members and current subscribers)

Purchase Online Access to this article for 24 hours

Figures

Place holder to copy figure label and caption
Figure 1.
Spectral-Domain Optical Coherence Tomography In Patients With Occult Macular Dystrophy

A, Healthy eye. B, Low reflectivity of the inner segment–outer segment (IS-OS) junction (between the 2 arrowheads) and central loss of the outer segment–retinal pigment epithelium (OS-RPE) interdigitation zone (arrow). C, Focal disruption of the IS-OS junction and OS-RPE interdigitation zone (arrowhead). D, Discontinuous IS-OS junction (arrowhead), central loss of the OS-RPE interdigitation zone, and disruption of the external limiting membrane (ELM) (arrow). ONL indicates outer nuclear layer.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.
Pearson Correlation Coefficient r Values for Visual Acuity Logarithm of the Minimum Angle of Resolution (logMAR) and Multimodal Imaging Findings

A, Correlation of best-corrected visual acuity with the number of involved retinal layers. B, Correlation of best-corrected visual acuity with photoreceptor inner segment–outer segment thickness. C, Correlation of best-corrected visual acuity with foveal thickness. D, Correlation of best-corrected visual acuity with outer nuclear layer thickness. E, Correlation of Humphrey perimetry values with photoreceptor inner segment–outer segment thickness. F, Correlation of multifocal electroretinography findings with photoreceptor inner segment–outer segment thickness. P values were obtained using linear regression analyses. The lines represent best-fit lines for linear regression analyses.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.
Multimodal Images of an Eye With Occult Macular Dystrophy

A, Central round area with low fundus infrared reflectance in the macula. B, Central hypoautofluorescence (between arrowheads) within normal hyperautofluorescence. C, Absence of short-wavelength autofluorescence abnormality. D, Spectral-domain optical coherence tomography images (right) reveal disruption of the inner segment–outer segment junction and outer segment–retinal pigment epithelium interdigitation zone corresponding to the lesion with low reflectance in the left infrared image. In addition, the central hypoautofluorescence in the infrared autofluorescence image corresponds to a severely disrupted inner segment–outer segment junction on spectral-domain optical coherence tomography (between arrowheads in B and D).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 4.
Correlation of Infrared Reflectance Images With Spectral-Domain Optical Coherence Tomography Images and Electrophysiologic Function

Correlation of infrared reflectance images with spectral-domain optical coherence tomography images (A-C) and electrophysiologic function (D and E).More prominent hyporeflectance in infrared images correlates with a more disrupted and less reflective inner segment–outer segment junction. Age-, sex-, and laterality-matched infrared reflectance images combined with multifocal electroretinography are shown in patient 3 (D) and patient 1 (E). The amplitudes of multifocal electroretinography in segments with more hyporeflective infrared reflectance (E) are lower than those in segments with less hyporeflective infrared reflectance (D). The circle in both images indicates the central 10° of the retina. The numbers in D and E indicate the multifocal electroretinography amplitude in each trace array (in nanovolts per degree squared).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 5.
Progression of Photoreceptor Disruption Identified Using Spectral-Domain Optical Coherence Tomography and Infrared Reflectance in Occult Macular Dystrophy

A, Definite progression in both the spectral-domain optical coherence tomography and infrared images. B, Equivocal photoreceptor disruption in the spectral-domain optical coherence tomography image but a more prominent infrared hyporeflectance in the infrared image at the final visit. C, No progression in either spectral-domain optical coherence tomography or infrared images. VA indicates visual acuity.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 6.
Short-Wavelength Autofluorescence (SW-AF) on the Left and Infrared Autofluorescence (IR-AF) on the right in Patients With Occult Macular Dystrophy

Patient numbers are indicated within the white boxes. Only patient 1 shows ringlike faint hyperfluorescence around the macula on SW-AF. Patients 7, 10, and 21 demonstrate central hypofluorescence within a round area of hyperfluorescence on IR-AF.

Graphic Jump Location

Tables

References

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Sign In to Access Full Content

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Topics
Jobs
JAMAevidence.com

The Rational Clinical Examination
Clinical Scenarios

The Rational Clinical Examination
Among Patients With Headaches, Who Should Have Neuroimaging?

brightcove.createExperiences();