0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Fluorescence Adaptive Optics Scanning Laser Ophthalmoscope for Detection of Reduced Cones and Hypoautofluorescent Spots in Fundus Albipunctatus

Hongxin Song, PhD1; Lisa Latchney, MS2; David Williams, PhD1,3; Mina Chung, MD1,2
[+] Author Affiliations
1Center for Visual Science, University of Rochester, Rochester, New York
2Flaum Eye Institute, University of Rochester, Rochester, New York
3The Institute of Optics, University of Rochester, Rochester, New York
JAMA Ophthalmol. 2014;132(9):1099-1104. doi:10.1001/jamaophthalmol.2014.1079.
Text Size: A A A
Published online

Importance  Fundus albipunctatus (FA) is a form of congenital stationary night blindness characterized by yellow-white spots, which were classically described as subretinal. Although night blindness and delayed dark adaptation are hallmarks of this condition, recent studies have described a macular phenotype, particularly among older patients. Using a fluorescence adaptive optics scanning laser ophthalmoscope (FAOSLO), this study provides in vivo morphologic data at the cellular level in FA.

Objective  To study the cone photoreceptors and the albipunctate spots in FA at single-cell resolution.

Design, Setting, and Participant  A woman in her 30s with FA underwent a complete ophthalmic examination, including conventional imaging tests, at the University of Rochester. A FAOSLO was used to obtain infrared reflectance images of the cone mosaic at the central fovea and along the superior and temporal meridians to 10° eccentricity. Cone density was measured at the foveal center, and cone spacing was calculated in sampling windows eccentrically. In the area of the albipunctate spots, autofluorescence FAOSLO images (excitation, 561 nm; emission, 624 Δ 40 nm) were simultaneously obtained.

Main Outcomes and Measures  Structural appearance of cones, cone density and spacing, and reflectance and autofluorescence of albipunctate spots.

Results  Cone density was reduced to 70% of the lower limit of the normal range at the foveal center (78.7 × 103 cones/mm2; mean [SD] reference range, 199 [87] × 103 cones/mm2), and cone spacing was increased eccentrically to 10° (sign test, P = .045). Individual cone central core reflectances appeared dim, suggesting loss of photoreceptor outer segments. The albipunctate spots were hypoautofluorescent. No photoreceptors or retinal pigment epithelium cells were identified at the locations of the albipunctate spots.

Conclusions and Relevance  Although the predominant clinical symptom of night blindness and the electroretinography results suggest a primary rod dysfunction, examination with a FAOSLO demonstrates that cone density is also reduced. This finding may represent an early sign of progression to macular phenotype in FA. The hypoautofluorescence suggests that the albipunctate spots do not represent lipofuscin.

Figures in this Article

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Figures

Place holder to copy figure label and caption
Figure 1.
Fluorescence Adaptive Optics Scanning Laser Ophthalmoscope (FAOSLO) Reflectance Images of the Cone Mosaic at Selected Eccentricities in the Temporal Retina

Patient with fundus albipunctatus (FA) (A, B, and C). Bottom row, age-matched individual with healthy eyes (D, E, and F). Images from the foveal center at 200 µm (A and D), 700 µm (B and E), and 2100 µm (C and F). White arrowheads indicate cones with decreased core reflectance (dark cones) in the patient with FA.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.
Labeling of Distinct Cones and Dark Cones

A, Fluorescence adaptive optics scanning laser ophthalmoscope (FAOSLO) reflectance image (700 µm temporal) shows distinct cones as well as dark cones in the patient with fundus albipunctatus. B, Logarithmic grayscale transformation of the same temporal area enables visualization of the dark cone cores. C, Cone labeling of only distinct cones. D, Cone labeling of both distinct cones (solid red circles) and dark cones (open red circles).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.
Foveal Cone Density Mapping Shows Reduced Peak Foveal Cone Density

A, Fluorescence adaptive optics scanning laser ophthalmoscope (FAOSLO) reflectance image of the cone mosaic in a 290 × 290-µm window centered on the center of the foveal avascular zone. The white square indicates a 100 × 100-µm window shown at higher magnification in panel C, centered on the location of peak cone density. B, Cone density map of the central 290 × 290-µm window. The color bar at the right indicates cone density in cones per squared millimeters. The location of peak cone density is marked (white x). C, Reflectance image of the central 100 × 100-µm window shows multiple dark cones. D, Cone labeling of distinct cones (solid red circles) and dark cones (open red circles).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 4.
Cone Spacing as a Function of Eccentricity

Cone spacing was significantly increased in comparison with the normal range (sign test, P = .045). Circles indicate the cone spacing of the patient with fundus albipunctatus (FA) (open circles indicate distinct cones, and solid circles, distinct + dark cones). Mean age-matched normal cone spacing data are indicated by diamond symbols (solid lines indicate ±2 SD).18

Graphic Jump Location
Place holder to copy figure label and caption
Figure 5.
Fluorescence Adaptive Optics Scanning Laser Ophthalmoscope (FAOSLO) Images of the Albipunctate Spots

A, Color fundus photograph of the temporal retina. White square indicates the location shown at higher magnification in panels B and C. B, FAOSLO reflectance image of the temporal retina shows bright reflectance of the albipunctate spots. Cones are visualized between spots, but no cones are identified at the location of the spots. C, FAOSLO autofluorescence image acquired at the same retinal location. The albipunctate spots are hypoautofluorescent (white arrows). Between spots, a honeycomb pattern indicative of the retinal pigment epithelium (RPE) cell mosaic is present. No RPE cells are discernible underlying the albipunctate spots.

Graphic Jump Location

Tables

References

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
Jobs
brightcove.createExperiences();