0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Clinical and Molecular Characterization of Enhanced S-Cone Syndrome in Children

Sarah Hull, MA, FRCOphth1,2; Gavin Arno, PhD1; Panagiotis I. Sergouniotis, PhD1,2; Peter Tiffin, FRCOphth3; Arundhati Dev Borman, BSc, MRCOphth1,2; Aman Chandra, BSc, FRCOphth1,2; Anthony G. Robson, MSc, PhD1,2; Graham E. Holder, MSc, PhD1,2; Andrew R. Webster, FRCOphth, MD1,2; Anthony T. Moore, MA, FRCOphth1,2
[+] Author Affiliations
1Inherited Eye Diseases, University College London Institute of Ophthalmology, London, England
2Moorfields Eye Hospital, London, England
3Sunderland Eye Infirmary, Sunderland, England
JAMA Ophthalmol. 2014;132(11):1341-1349. doi:10.1001/jamaophthalmol.2014.2343.
Text Size: A A A
Published online

Importance  Enhanced S-cone syndrome (ESCS) forms part of the differential diagnosis of night blindness in childhood.

Objective  To report in detail the clinical phenotype and molecular genetic findings in a series of children with ESCS.

Design, Setting and Participants  Nine children with ESCS from 5 families underwent full ophthalmic examination, electrophysiological testing, and retinal imaging at a genetic eye disease clinic of a tertiary referral eye hospital. Bidirectional Sanger sequencing of all exons and intron-exon boundaries of NR2E3 was performed.

Main Outcomes and Measures  Results of ophthalmic examination and sequence analysis of NR2E3.

Results  In total, 5 girls and 4 boys with a diagnosis of ESCS were included in the study. All patients had developed nyctalopia from early childhood. Visual acuity ranged from 0.00 to 1.20 logMAR (20/20 to 20/320 Snellen). All patients had hyperopia. Three patients had nummular pigmentary lesions along the arcades as typically seen in adults, 4 patients had mild pigmentary disturbance or white dots along the arcades, and 2 patients had a normal retinal appearance, although their fundus autofluorescence imaging demonstrated foci of increased autofluorescence along the arcades. Three patients had macular schisis-like changes on optical coherence tomography. Eight patients had electrophysiological testing at a mean age of 8.6 years (age range, 3-14 years), and in each patient the findings were consistent with the diagnosis of ESCS. Direct sequencing of NR2E3 identified 3 previously described mutations and 4 novel mutations. Seven patients were compound heterozygous for mutations in NR2E3, and 2 additional sibling patients were presumed to be homozygous for a missense change based on parental sequencing.

Conclusions and Relevance  In this sample, children with ESCS had an early onset of night blindness and hyperopia but no nystagmus. Based on this study, children with ESCS may initially manifest a normal fundus appearance but later develop mottled retinal pigment epithelium change along the arcades, followed by the appearance of white dots in the same distribution. Fundus autofluorescence imaging is abnormal in children with a normal fundus appearance. The electrophysiological findings are pathognomonic and allow targeted molecular screening and a specific diagnosis.

Figures in this Article

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

First Page Preview

View Large
First page PDF preview

Figures

Place holder to copy figure label and caption
Figure 1.
Range of Fundus Abnormalities in Pediatric Enhanced S-Cone Syndrome

A through C, Patient 5 has left eye normal fundus appearance (A and B) and abnormal fundus autofluorescence imaging with high-density foci (C). D through F, Patient 2.1 has right eye normal fundus appearance in 2006 (D), right eye fundus appearance in 2011 with retinal pigment epithelium mottling present (E), and right eye fundus autofluorescence imaging with high-density foci (F). G and H, Patient 1.3 has right eye confocal scanning laser imaging fundus appearance with retinal pigment epithelium mottling and a few white dots (G) and fundus autofluorescence imaging showing diffuse paracentral hyperfluorescence and small high-density foci along the arcades (H). I and J, Patient 1.2 has right eye confocal scanning laser imaging fundus appearance demonstrating white dots and extensive nummular pigmentation (I) and fundus autofluorescence imaging demonstrating diffuse paracentral hyperfluorescence, small high-density foci, and a hypofluorescent ring outside of the arcades (J).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.
Spectral-Domain Optical Coherence Tomography Scans (Infrared Images Are on the Left, and Tomographic Images Are on the Right)

A, Patient 5 has left eye normal macular optical coherence tomography. B, Patient 2.1 has right eye abnormal macular optical coherence tomography with intraretinal cysts. C, Patient 1.2 has right eye abnormal superior arcade optical coherence tomography demonstrating disorganized architecture and multiple hyperreflective lesions in the outer nuclear layer (white arrowhead).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.
Electrophysiological Testing in Enhanced S-Cone Syndrome

A, Full-field and pattern electroretinography in patient 2.1. Electroretinography shows findings pathognomonic of enhanced S-cone syndrome. The dark-adapted (DA) 0.01 response (rod specific) is bilaterally undetectable. The DA 3.0 and light-adapted (LA) 3.0 responses have the same simplified waveform and are markedly delayed. The 30-Hz flicker electroretinography is both delayed and of lower amplitude than the LA 3.0 response a-wave. Pattern electroretinography (PERG) is bilaterally delayed. B, Extended S-cone electroretinography from the right eye of patient 2.1. S-cone electroretinography is delayed and simplified compared with the normal control and is of high amplitude. The healthy individual with 5-millisecond (ms) and 10-ms stimulus duration shows an early component from M-cones and L-cones and a later component from S-cones. The patient lacks the M-cone and L-cone component. The 200-ms blue stimulus response shows some off activity, as occurs in some but not all patients with enhanced S-cone syndrome.4 The photopic on-off response in the patient (200-ms orange flash) is markedly reduced, demonstrates a simplified waveform, and shows delay in all components.

Graphic Jump Location

Tables

References

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Sign in

Create a free personal account to sign up for alerts, share articles, and more.

Purchase Options

• Buy this article
• Subscribe to the journal

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections
PubMed Articles
Jobs
brightcove.createExperiences();