We're unable to sign you in at this time. Please try again in a few minutes.
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Original Investigation |

Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy

Thomas S. Hwang, MD1; Simon S. Gao, PhD1; Liang Liu, MD1; Andreas K. Lauer, MD1; Steven T. Bailey, MD1; Christina J. Flaxel, MD1; David J. Wilson, MD1; David Huang, MD, PhD1; Yali Jia, PhD1
[+] Author Affiliations
1Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
JAMA Ophthalmol. 2016;134(4):367-373. doi:10.1001/jamaophthalmol.2015.5658.
Text Size: A A A
Published online

Importance  Macular ischemia is a key feature of diabetic retinopathy (DR). Quantification of macular ischemia has potential as a biomarker for DR.

Objective  To assess the feasibility of automated quantification of capillary nonperfusion as a potential sign of macular ischemia using optical coherence tomography (OCT) angiography.

Design, Setting, and Participants  An observational study conducted in a tertiary, subspecialty, academic practice evaluated macular nonperfusion with 6 × 6-mm OCT angiography obtained with commercially available 70-kHz OCT and fluorescein angiography (FA). The study was conducted from January 22 to September 18, 2014. Data analysis was performed from October 1, 2014, to April 7, 2015. Participants included 12 individuals with normal vision serving as controls and 12 patients with various levels of DR.

Main Outcomes and Measures  Preplanned primary measures were parafoveal and perifoveal vessel density, total avascular area, and foveal avascular zone as detected with 6 × 6-mm OCT angiography and analyzed using an automated algorithm. Secondary measures included the agreement of the avascular area between the OCT angiogram and FA.

Results  Compared with the 12 healthy controls (11 women; mean [SD] age, 54.2 [14.2] years), the 12 participants with DR (4 women; mean [SD] age, 55.1 [12.1] years) had reduced parafoveal and perifoveal vessel density by 12.6% (95% CI, 7.7%-17.5%; P < .001) and 10.4% (95% CI, 6.8%-14.1%; P < .001), respectively. Total avascular area and foveal avascular zone area were greater in eyes with DR by 0.82 mm2 (95% CI, 0.65-0.99 mm2; P = .02) and 0.16 mm2 (95% CI, 0.05-0.28 mm2; P < .001). The agreement between the vascular areas in the OCT angiogram and FA had a κ value of 0.45 (95% CI, 0.21-0.70; P < .001). Total avascular area in the central 5.5-mm-diameter area distinguished eyes with DR from control eyes with 100% sensitivity and specificity.

Conclusions and Relevance  Avascular area analysis with an automated algorithm using OCT angiography, although not equivalent to FA, detected DR reliably in this small pilot study. Further study is necessary to determine the usefulness of the automated quantification in clinical practice.

Figures in this Article


Place holder to copy figure label and caption
Figure 1.
Automated Avascular Area Detection in Optical Coherence Tomography (OCT) Angiography

Example images of normal (control), nonproliferative diabetic retinopathy (DR), and proliferative DR. FA indicates fluorescein angiography. Dotted circles in the first row indicate sectors for perifovea (green circles) and parafovea (blue circles). In the third column, light blue corresponds to automatically detected areas of nonperfusion (highlighted by dashed box in the first row).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.
Nonperfusion as Seen on Optical Coherence Tomography (OCT) Angiography vs Fluorescein Angiography (FA)

A, An OCT angiogram showing nonperfuson area detected in an eye with diabetic retinopathy in light blue. B, The corresponding FA . Yellow arrowheads disclose an area of capillary dropout seen on OCT but not FA. Red arrowheads point to an area of nonperfusion seen on FA that was not detected by the algorithm.

Graphic Jump Location




Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.


Some tools below are only available to our subscribers or users with an online account.

3 Citations

Sign in

Purchase Options

• Buy this article
• Subscribe to the journal
• Rent this article ?

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Collections
PubMed Articles

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Accuracy of Findings to Detect Clinically Significant Intra-abdominal Injuries

The Rational Clinical Examination: Evidence-Based Clinical Diagnosis
Quick Reference