0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Clinicopathologic Reports, Case Reports, and Small Case Series |

Stargardt Disease in a Patient With Retinoblastoma FREE

Eyal Margalit, MD, PhD; Janet S. Sunness, MD; W. Richard Green, MD; Shalom E. Kelman, MD; Andrew P. Schachat, MD; Dean Fiergang, MD; Rando Allikmets, PhD
[+] Author Affiliations

Section Editor: W. Richard Green, MD

More Author Information
Arch Ophthalmol. 2003;121(11):1643-1646. doi:10.1001/archopht.121.11.1643.
Text Size: A A A
Published online

Retinoblastoma is the most common primary ocular malignancy of young children, with an incidence of 1:17 000 to 1:34 000 new births. Retinoblastoma is bilateral in about 30% of cases.1 Although new modalities offer an enhanced chance of eye salvage, in bilateral disease, management often leads to enucleation of the more-involved eye, with more conservative treatment of the better eye. Subsequently, the child is watched carefully for recurrence and for any evidence of central nervous system involvement or other malignancies. The retinoblastoma gene (Rb)is located in the 14 band of the q, or long arm, of chromosome 13. The Rb gene causes cancer when its protein product is absent or dysfunctional.

We describe a child with bilateral retinoblastoma after enucleation of the more-involved eye at 13 months of age, who was diagnosed as having Stargardt disease in the preserved eye at age 10 years. The significant points we wish to highlight are the difficulty in diagnosing Stargardt disease because of subtle retinal findings, and the opportunity this case affords for investigating early preclinical stages of Stargardt disease. To our knowledge, there is only 1 previously reported case of these 2 disorders in the same patient.2

A 10-year-old white boy was assessed at Wilmer Eye Institute (Baltimore, Md) in April 2002 because of decreased vision in the right eye. He had been diagnosed as having retinoblastoma in both eyes in October 1992, when he was 7 months old, after having symptoms of leukocoria and esotropia of the left eye. His medical history included a normal pregnancy and delivery, and normal development thereafter. His family history was significant only for adult-onset diabetes mellitus in the maternal grandfather as well as associated cardiac arrhythmias. His social history was notable for normal school progression in the years that followed the diagnosis.

At the time of diagnosis of the right eye, examination under anesthesia demonstrated a normal disc and macula, although the vessels were somewhat dilated and tortuous. There were 2 tumors, 1 superotemporal and 1 inferior to the posterior pole. In the left eye, about three quarters of the retina was involved with tumor, and the one quadrant that was not had multiple vitreous seeds (Figure 1). There were some areas of hemorrhage on the surface of the tumor. Ultrasound examination showed questionable involvement of the optic nerve in the left eye. Both eyes were treated with external beam radiation (total dose of 4680 rad [46.8 Gy]), although it was unlikely that the left eye could be salvaged. The left eye was enucleated in April 1993, owing to the development of chronic retinal detachment, although the tumors in both eyes shrunk and had the appearance of cottage cheese. There was no recurrence in the right eye or elsewhere thereafter.

Place holder to copy figure label and caption
Figure 1.

Photograph of the left eye shows large tumors that can be seen through the dilated pupil (arrows).

Graphic Jump Location

Visual acuity of the right eye stabilized at a level of 20/30 through November 2000, despite the presence of mild posterior subcapsular cataractous changes. The patient was followed up semiannually by an ocular oncologist, and his visual acuity was 20/30 since at least 1998. In September 2001, he was noted to have decreased visual acuity during an evaluation for glasses. He saw a pediatric ophthalmologist, who referred him to an ocular genetics specialist. Findings on magnetic resonance imaging to rule out central nervous system metastasis were normal. Although macular thickening was not appreciated clinically, optical coherence tomography was performed, and the findings were normal as well. The patient was subsequently referred to a neuro-ophthalmologist, who found the patient's visual acuity to be 20/100 and did not find evidence of optic neuropathy. He was then referred to the visual function service at Wilmer for electrophysiologic testing and further evaluation of his decreased visual acuity.

On initial examination in April 2002, the best-corrected visual acuity with a compound astigmatic refraction measured 20/100 OD. The visual field was full to confrontation. There was a mild posterior subcapsular opacity of the lens. Dilated fundus examination was somewhat difficult. The disc appeared normal. Evidence of a regressed retinoblastoma in the periphery was present, with small white opacities in the posterior vitreous overlying the macula, which were old. The macula was difficult to assess because of eye movement during ophthalmoscopy.

A visual evoked response was obtained and did not show evidence of an optic neuropathy. An electroretinogram showed minimally reduced rod responses and normal cone responses. A multifocal electroretinogram showed a loss of the central peak and reduced responses in a circular region of about 15° in diameter, centered on the fovea (Figure 2).

Place holder to copy figure label and caption
Figure 2.

A multifocal electroretinogram of the right eye shows reduced responses in a circular region of about 15° in diameter, centered on the fovea.

Graphic Jump Location

The patient returned in May 2002 for further evaluation. Scanning laser ophthalmoscope imaging and perimetry were performed to assess the basis of the decreased vision. Infrared imaging showed a central macular lesion between 1 and 2 disc areas in size. This region had a dense scotoma on scanning laser ophthalmoscope perimetry (Figure 3).Fixation was placed significantly superior to the edge of the dense scotoma and lesion. Yellow flecks were also noted in the infrared image. Argon imaging showed tiny white spots near the arcades. Autofluorescence imaging showed the center lesion to have a loss of autofluorescence. Fundus photographs showed a beaten-bronze appearance of the central macula and yellow flecks (Figure 4). Fluorescein angiography showed a dark choroid pattern and flecks in the posterior pole as well as early and late central hyperfluorescence in a bull's-eye pattern (Figure 5). The diagnosis appeared to be classical Stargardt disease.

Place holder to copy figure label and caption
Figure 3.

Color fundus photograph of the right eye shows beaten-bronze appearance of the central macula (arrowhead) and yellow flecks in the posterior pole (arrows).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 4.

Scanning laser ophthalmoscope perimetry of the macular area of the right eye. Fixation point is seen superior to the foveal avascular zone (cross). Circles indicate spots that were visible to the patient. Triangles indicate spots that were invisible to the patient. The color scale is in decibels. An absolute scotoma is seen at the area of retinal pigment epithelial changes (filled red triangles). A relative scotoma is seen around the retinal pigment epithelial changes (filled circles with any color and filled triangles with colors other than red). Flecks can be seen in the periphery of the posterior pole (arrow).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 5.

A fluorescein angiogram of the right eye shows a dark choroid pattern and flecks (arrow) in the posterior pole as well as early and late central hyperfluorescence in a bull's-eye pattern(arrowhead).

Graphic Jump Location

Electron microscopic examination of ocular tissue of the left eye stored in formalin for 9 years before the development of symptoms from Stargardt disease in the fellow eye showed an abundance of lipofuscin granules in the cytoplasm of retinal pigment epithelial cells (Figure 6).

Place holder to copy figure label and caption
Figure 6.

Electron microscopy examination discloses an unremarkable Bruch membrane covered by retinal pigment epithelium measuring 8.3 mm in height. The pigment epithelium has normal-appearing melanin pigment granules and numerous lipofuscin granules (arrows) (original magnification×8000). BM indicates Bruch membrane; CC, choriocapillaries.

Graphic Jump Location

The patient's DNA was screened for sequence variants in the recessive Stargardt disease gene, ABCA4, on the recently introduced ABCR400 microarray.3 The array (gene chip) contains all known (>400) ABCA4 variants and allows screening for all mutations in one step at greater than 98% efficiency. Currently, the chip reveals about 60% of disease-associated mutations in an average cohort of Stargardt patients, detecting both mutations in about 35%, one mutation in about 40%, and no mutations in about 25% of patients diagnosed as having Stargardt disease.3 This efficiency can be explained by the 2 main reasons: (1) inclusion of phenocopies associated with mutations of other genes, which cannot be avoided completely due to the selection methods and, (2) many disease-associated ABCA4 alleles remain currently unknown.

In this patient, the chip detected 5 sequence variants: H423R, P1401P, IVS33 + 48 C>T, N1868I, and L1894L, all of which are considered nonpathogenic polymorphisms. Since the patient's diagnosis is consistent with autosomal recessive Stargardt disease, the negative finding has to be explained by the current limitations of the diagnostic method.

We found that this 10-year-old child with retinoblastoma in both eyes, who underwent enucleation of the left eye for this condition, had evidence for classic Stargardt disease in the remaining right eye. He had a central scotoma with a central atrophic retinal lesion, a dark choroid on fluorescein angiography, and yellow-white flecks. He had a fixation pattern that is characteristic of Stargardt disease4 and evidence of lipofuscin granules in the cytoplasm of the retinal pigment epithelial cells by electron microscopy. Lipofuscin granules are usually found in older individuals and not in the retinal pigment epithelium of an eye enucleated at such a young age.5 Similar findings were reported in previous electron microscopic examinations of an enucleated eye of a young patient with Stargardt disease.2

Despite evaluations by 5 ophthalmologists, the macula was not visualized adequately to make the diagnosis. This is not uncommon in Stargardt disease, in which children are sometimes referred for psychiatric evaluation for their decreased vision because no macular lesion is seen. Fundus photography, and in this case, scanning laser ophthalmoscope imaging, may be of great value in assessing the macula, with fluorescein angiography providing additional data.

We have consulted several ophthalmologists with vast experience in the field of ophthalmic oncology, and they have not seen a patient with both retinoblastoma and Stargardt disease (Theodore Dryja, MD, e-mail communication, and Carol Shields, MD, written communication 2002). However, a literature search revealed a similar case published by Steinmetz et al.2 Presumably, these 2 conditions occurred coincidentally in the same patient, in this case and in ours. The paucity of other cases suggests that the 2 conditions are not related genetically.

This research was supported in part by the Sinai/Wilmer Fellowship Award, Baltimore, Md (Dr Margalit), Project Vision Fellowship Award from Jewish Healthcare International, Atlanta, Ga (Dr Margalit), and by the Physician Scientist Merit Award from Research to Prevent Blindness, New York, NY (Dr Sunness).

The authors have no relevant financial interest in this article.

Corresponding author and reprints: Janet S. Sunness, MD, Wilmer Eye Institute, 550 N Broadway, Suite 611, Baltimore, MD 21205 (e-mail: jsunness@jhmi.edu).

Atchaneeyasakul  LMurphree  A Retinoblastoma. In:Ryan  Sed.Retina Singapore Mosby Inc2001;513- 570
Steinmetz  RLGarner  AMaguire  JIBird  AC Histopathology of incipient fundus flavimaculatus. Ophthalmology. 1991;98953- 956
PubMed
Jaakson  KZernant  JKülm  M  et al.  Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. Hum Mutat. 2003;22395- 403
Sunness  JSApplegate  CAHaselwood  DRubin  GS Fixation patterns and reading rates in eyes with central scotomas from advanced atrophic age-related macular degeneration and Stargardt disease. Ophthalmology. 1996;1031458- 1466
PubMed
Feeney-Burns  LBerman  ERRothman  H Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol. 1980;90783- 791
PubMed

Figures

Place holder to copy figure label and caption
Figure 1.

Photograph of the left eye shows large tumors that can be seen through the dilated pupil (arrows).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.

A multifocal electroretinogram of the right eye shows reduced responses in a circular region of about 15° in diameter, centered on the fovea.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 3.

Color fundus photograph of the right eye shows beaten-bronze appearance of the central macula (arrowhead) and yellow flecks in the posterior pole (arrows).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 4.

Scanning laser ophthalmoscope perimetry of the macular area of the right eye. Fixation point is seen superior to the foveal avascular zone (cross). Circles indicate spots that were visible to the patient. Triangles indicate spots that were invisible to the patient. The color scale is in decibels. An absolute scotoma is seen at the area of retinal pigment epithelial changes (filled red triangles). A relative scotoma is seen around the retinal pigment epithelial changes (filled circles with any color and filled triangles with colors other than red). Flecks can be seen in the periphery of the posterior pole (arrow).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 5.

A fluorescein angiogram of the right eye shows a dark choroid pattern and flecks (arrow) in the posterior pole as well as early and late central hyperfluorescence in a bull's-eye pattern(arrowhead).

Graphic Jump Location
Place holder to copy figure label and caption
Figure 6.

Electron microscopy examination discloses an unremarkable Bruch membrane covered by retinal pigment epithelium measuring 8.3 mm in height. The pigment epithelium has normal-appearing melanin pigment granules and numerous lipofuscin granules (arrows) (original magnification×8000). BM indicates Bruch membrane; CC, choriocapillaries.

Graphic Jump Location

Tables

References

Atchaneeyasakul  LMurphree  A Retinoblastoma. In:Ryan  Sed.Retina Singapore Mosby Inc2001;513- 570
Steinmetz  RLGarner  AMaguire  JIBird  AC Histopathology of incipient fundus flavimaculatus. Ophthalmology. 1991;98953- 956
PubMed
Jaakson  KZernant  JKülm  M  et al.  Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. Hum Mutat. 2003;22395- 403
Sunness  JSApplegate  CAHaselwood  DRubin  GS Fixation patterns and reading rates in eyes with central scotomas from advanced atrophic age-related macular degeneration and Stargardt disease. Ophthalmology. 1996;1031458- 1466
PubMed
Feeney-Burns  LBerman  ERRothman  H Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol. 1980;90783- 791
PubMed

Correspondence

CME
Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 3

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Topics