0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Special Article |

Assessment of Alleged Retinal Laser Injuries FREE

Martin A. Mainster, PhD, MD; Bruce E. Stuck, MS; Jeremiah Brown Jr, MD, MS
[+] Author Affiliations

From the Department of Ophthalmology, University of Kansas MedicalSchool, Kansas City (Dr Mainster); the United States Army Medical ResearchDetachment, Walter Reed Army Institute of Research, Brooks Air Force Base,Tex (Mr Stuck and Dr Brown); and Ophthalmology Associates, Nix Medical Center,San Antonio, Tex (Dr Brown). The authors have no relevant financial interestin this article.


Arch Ophthalmol. 2004;122(8):1210-1217. doi:10.1001/archopht.122.8.1210.
Text Size: A A A
Published online

  Accidental retinal laser injuries are easily diagnosed when there areknown laser sources, typical macular injuries, and visual deficits consistentwith retinal findings. Decisions are more difficult when retinal findingsare subtle or absent, despite reported visual problems and somatic complaints.Inaccurate diagnosis of an ocular laser injury can precipitate a costly, lengthysequence of medical and legal problems. Analysis of laser-tissue interactionsand the characteristics of unambiguous retinal laser injuries provide 6 keyquestions to facilitate difficult diagnoses. Case reports demonstrate theusefulness of answering these questions before making diagnostic decisions.Retinal laser lesions that cause serious visual problems are readily apparentophthalmoscopically and angiographically. Accidental, intentional, or clinicalretinal laser lesions do not cause chronic eye, face, or head pains. Diagnosisof a retinal laser injury should be evidence based, not a matter of conjectureor speculation.

Figures in this Article

It is well understood that accidental momentary exposure to an ordinaryflashlight beam is annoying but safe. Accidental momentary exposure to a low-powerlaser pointer beam is also annoying but safe, yet it can evoke fear or outragein some people.15 Untowardresponses to real or imagined laser exposures can have complex social andpsychiatric explanations or more practical fiscal motivations. Ophthalmologistsmay be called on to determine whether a retinal laser injury is responsiblefor symptoms that reportedly follow an actual or perceived laser exposureincident. The proper analysis of those situations requires a clear understandingof the organic and psychophysical consequences of actual laser injuries, particularlywhen real but unrelated ophthalmic and systemic problems are present to confoundthe analysis.

Exposure to UV radiation (200-400 nm), visible light (400-700 nm), andinfrared radiation (700-10 000 nm) can damage the eye.69 Transmissionand absorption of optical radiation by ocular media depend on the wavelengthof the incident UV radiation, visible light, or infrared radiation.10 Wavelength, pulse duration, spot size, and irradiance(power density, or laser power divided by area) determine the magnitude andlateral extent of temperature rises in exposed tissue produced by incidentlaser beams.11,12 Cornea and lensrefraction produce retinal irradiances for laser beams that are up to 105 times greater than their corneal irradiances.13 Laserradiation can damage the eye by photomechanical, photothermal, or photochemicalmechanisms.8,9,1416 Itis useful to differentiate between these mechanisms, but more than one effectmay be involved in any particular injury.

Photomechanical injuries are caused by extremely high laser irradiancesin very brief laser exposures ranging from hundreds of femtoseconds (10− 15 seconds) to microseconds (10− 6 seconds).Tissue is fragmented, perforated, or distorted immediately by a photomechanicalinjury.Clinical examples include photodisruption in Nd:YAGlaser capsulotomy, photoablation in excimer laser keratorefractive surgery,and photovaporization in holmium:YAG laser thermokeratoplasty for hyperopia.Powerful Q-switched industrial or military lasers can cause severeretinal injuries when their radiation is absorbed in the retinal pigment epithelium(RPE) and underlying choroid.1723 Intypical, accidental retinal injuries, rapid tissue expansion causes hemorrhageand prominent, permanent retinal scars.

Thermal laser injuries are produced by high laser irradiances in briefexposures ranging from microseconds to several seconds. Tissue protein coagulationoften causes immediate or delayed blanching of the laser impact site and adjacenttissue. Clinical examples include argon laser panretinal photocoagulationand trabeculoplasty. Barely visible retinal photocoagulation lesions are associatedwith retinal temperature increases of 10°C.12,2428 Typicalclinical photocoagulation lesions are associated with much higher retinaltemperature increases (40°C-60°C).12,24,27,28 Accidentalcornea, iris, and crystalline lens injuries have been reported in clinicalphotocoagulation.2934 Accidentalretinal laser lesions that produce substantial vision loss are apparent ophthalmoscopicallyor angiographically.1723

Photochemical injuries occur when prolonged optical radiation exposurecauses phototoxic chemical reactions in affected tissues8,16,3537 orwhen a previously administered exogenous photosensitizer is activated by anappropriate light source.38 Clinical examplesinclude solar and operating microscope maculopathy and verteporfin photodynamictherapy for age-related macular degeneration. Viewing intense light is veryuncomfortable. Natural protective responses, such as squinting, pupillaryconstriction, and looking away from uncomfortably brilliant light sources,protect people from phototoxic retinal injuries, except in highly unusual,prolonged viewing circumstances, such as unprotected solar eclipse observationor welding arc viewing with a defective protective filter.6,9,39

It is estimated that fewer than 15 retinal injuriesworldwide each year are caused by industrial and military lasers.17,22,4044 Inmost actual laser eye injuries, the laser source is known, typical chorioretinaldamage occurs, there is an unambiguous temporal relationship between a laserincident and the onset of visual abnormalities that are well correlated withretinal findingsand retinal abnormalities remodel after the incidentin a manner commensurate with their severity.

Laser eye injuries can be prevented by appropriate laser safety eyewearuse. Unfortunately, laser safety glasses or goggles partially restrict vision,interfering with visually demanding laboratory, industrial, or military tasks.In addition, laser safety goggles can be uncomfortable and can fog in hotand humid environments. Most industrial accidents occur when a misfired laserbeam enters an unshielded bystander's eye. Military injuries typically occurwhen a laser rangefinder or target designator beam is inadvertently or inappropriatelyviewed by an unprotected user or onlooker (Figure 1 and Figure 2).46,47 An ordinary laser pointer is safe,unless a user chooses to stare at its uncomfortable brilliant light for morethan 10 seconds at close range, despite eye hazard labels warning users toavoid eye exposure.15 Anteriorsegment eye injuries from lasers are rare because UV and infrared lasers thatproduce radiation with considerable corneal or crystalline lens absorptionare typically used in well-controlled medical or industrial devices or environments.Most ocular laser accidents are caused by powerful Q-switched lasers thatproduce serious retinal injuries.19,20,22,42

Place holder to copy figure label and caption
Figure 1.

A mild accidental laser injury.A 21-year-old female technician accidentally looked into the exit apertureof a repetitively pulsed infrared Nd:YAG 1064-nm target designation laser.The technician reported seeing 2 or 3 yellowish flashes at the time of thelaser exposure. Visual acuity in her left eye was 20/50 a few hours afterthe accident and 20/200 two days later; visual acuity returned to 20/15 twomonths after the injury. A, Four days after the accident, there is fovealedema, surrounding subretinal hemorrhage, and several small, hypopigmentedretinal pigment epithelium lesions. B, One month after the accident, fovealedema and subretinal hemorrhage have resolved, and a small area of fovealretinal pigment epithelium degeneration has developed.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.

A severe accidental laser injury.A 20-year-old male technician deliberately viewed the output of a laser rangefinderdespite reading warning labels and undergoing laser safety training. He reportedimmediate vision loss in his right eye, with some improvement after 5 minutes.He sought medical assistance 18 hours after the injury, at which time visualacuity was 20/150 OD, where there was a macular and vitreous hemorrhage. Thevitreous hemorrhage cleared, and his visual acuity returned to 20/70 duringthe next month. After the accident, visual acuity was 20/40 OD at 1 year and20/30 OD at 2 years. A, Ten weeks after the injury, there is a full-thicknessmacular hole with surrounding retinal pigment epithelium depigmentation inthe right eye. B, Fluorescein angiography documents a prominent foveal windowdefect due to retinal pigment epithelium atrophy. C, Optical coherence tomographydocuments a macular hole with increased reflectivity at its base. This increasedreflectivity is a characteristic of laser-induced macular holes.45 Itis caused by choriocapillaris scarring, so the prognosis for visual improvementafter macular surgery may be worse for laser-induced than idiopathic macularholes.45

Graphic Jump Location

The severity of initial vision loss after a retinal laser injury dependson the distance of the laser impact site from the center of the fovea, theextent of chorioretinal disruption, and the amount of chorioretinal bleeding.Victims of visually significant retinal laser injuries typically experiencesudden, severe decreased vision in one or, less commonly, both eyes. Theyusually notice a bright flash of light even with invisible laser beams, followedby an immediate decrease in the vision of affected eyes. They occasionallyhear a loud popping sound during a Q-switched chorioretinal laser injury.Vision may improve over several days to months. Visual prognosis is excellentif retinal findings are minor or do not involve the fovea. If the resultsof Amsler grid testing are abnormal, findings stabilize within a few months.These findings are consistent, stable, and well correlated with retinal findingsin cooperative patients.

Momentary pain may occur at the time of ocular laser injury, but onlyrarely. This pain does not persist, just as it does not persist after clinicalretinal photocoagulation. Noninjurious laser exposures and most laser injuriesare painless, but rubbing an eye after a laser exposure can cause a painfultransient corneal abrasion that individuals may attribute to laser exposure.Self-inflicted corneal abrasions are responsible for reported painful visionlosses in children after laser pointer exposures.5

The most common initial clinical finding after an industrialor military Q-switched laser injury is prominent vitreous and/or chorioretinalhemorrhage from blood vessels ruptured by tissue distortion (Figure 2).17,2022,40 Thenumber and size of blood vessels damaged at the laser impact site determinethe extent of initial hemorrhage.23 The locationof the vessels and the structural integrity of adjacent tissue determine howeffectively blood is tamponaded locally.23 Largeretinal areas can be rendered dysfunctional if blood spreads laterally intosubhyaloid, subretinal, or sub-RPE spaces. Persistence of hemorrhage intosubretinal spaces can cause photoreceptor deterioration.48 Retinalholes and scarring can occur at the impact site (Figure 1 and Figure 2).17,2022,40

Fundus photography, fluorescein angiography, and opticalcoherence tomography are invaluable for determining whether retinal injuryis present after a laser incident and, if so, whether visual complaintsare consistent with documented retinal abnormalities. Acute photomechanicalinjuries typically produce a hypofluorescent spot at the laser impact sitecaused by vitreous or associated chorioretinal hemorrhage. As the hemorrhageresolves, a hyperfluorescent window defect may develop at the site owing toRPE damage (Figure 2), with hyperfluorescentstaining of any fibrosis that develops after the injury. An RPE discontinuityor elevation is commonly seen on optical coherence tomograms immediately afterand subsequent to photomechanical injuries (Figure 2). Acute photocoagulation lesions typically have a hypofluorescentcenter with a surrounding ring of faint hyperfluorescence. If a photocoagulationlesion is sufficiently small, there may be only a tiny hyperfluorescent spotat the injury site. Fluorescein leakage in the form of staining or poolingof dye at photocoagulation sites in late angiogram frames is common immediatelyafter an injury. Acute photochemical lesions may have no angiographic abnormalities(as in mild solar maculopathy) or early hyperfluorescence with late leakage(as in operating microscope injuries).9 Visuallysignificant phototoxic lesions eventually produce angiographically apparentRPE abnormalities.

Retinal photography and fluorescein angiography should be performedas soon as possible after a suspected laser injury because there may be subvisiblelesions if laser exposure variables are below thresholds for ophthalmoscopicallyapparent lesions. These tests are also important for dating chorioretinalfindings and for determining whether concurrent systemic disease rather thanlaser injury could be their cause. Indocyanine green angiography may alsobe useful, particularly if it is performed using scanning laser ophthalmoscopy.

If there is no vitreous and/or chorioretinal hemorrhage to obscure thesite, an acute laser injury is likely to produce a lesion with some fluoresceinpooling or staining, whereas an ordinary window defect on an angiogram performedwithin a week of a laser incident is more likely to be due to previous trauma,inflammation, or other natural processes. The possibility of preexisting orconcurrent eye or systemic problems makes it important to obtain a completemedical history and review of systems in cases of possible retinal laser injury,in addition to carefully reviewing copies of past medical records and retinalimaging if available.

Incidental angiographic findings should not be overinterpreted.For example, tiny RPE window defects occur routinely in angiograms with normalfindings. In a small series of 50 consecutive fluorescein angiograms reviewedby one of us (M.A.M.), two thirds of the contralateral normal eyes of individualswith unilateral retinal problems had 1 or more tiny RPE window defects. TheRPE is its own record of a lifetime of infection, trauma, inflammation, andother natural events. A few scattered RPE imperfections are neither surprisingnor conclusively diagnostic of laser injury.

The diagnosis of a laser injury can have considerable legal, financial,and medical consequences. It should be based on objective medical evidencerather than on unscientific speculation. Medicolegal problems arise when aninjury is alleged but objective findings are absent, within normal limits,or explainable by unrelated medical problems. The ease of diagnosing an actuallaser injury is directly proportional to its severity. The answers to 6 facilitatingquestions are useful for diagnosing less severe or absent injuries after areal or imagined laser accident (Table 1). If the answer to question 1 is "no," then no visually significantlaser injury has occurred. If the answers to all 6 questions are "yes," thena laser injury has almost certainly occurred.

Table Graphic Jump LocationSix Questions That Facilitate the Diagnosis of Alleged Retinal LaserInjuries

Proper evaluation of a laser injury demands an exhaustive review ofsystems and medical history to rule out ocular or systemic causes for theophthalmic and somatic complaints ascribed to a purported laser exposure.In suggestible or otherwise susceptible individuals, pain can represent anindividual's somatization of a perceived although not organic ocular injury.Differentiating the psychiatric, financial, or other origins of nonorganicdisorders is a challenging problem,4960 butperceived ocular injuries with no demonstrable tissue damage are not reallaser injuries.

CASE 1
History

An 11-year-old girl stared at a red laser pointer beam held close toher right eye for more than 10 seconds to satisfy the curiosity of classmateson a school bus who wanted to know if her pupil would constrict.61 Sheexperienced no pain but developed decreased vision and a central scotoma immediatelyin her right eye. Three weeks later, a retinal evaluation revealed centralfoveal pigment mottling with corresponding faint hyperfluorescence on fluoresceinangiography. These findings became less prominent during the next 3 monthsas her scotoma resolved, and her uncorrected visual acuity returned to 20/25OD, the same as in her unaffected left eye. She had no other ocular abnormalitiesin her right eye. In addition, this patient had no recent history of infection,inflammation, or mechanical trauma and no contributory past systemic or ocularhistory.

Analysis

This 11-year-old girl probably experienced a 5-mW, 10-second, 50-µmretinal spot diameter exposure that produced a 6° to 10° retinal temperaturerise with a retinal irradiance of 160 W/cm2 of diode 635-nm redlight.5,62 In comparison, clinicalphotocoagulation for diabetic retinopathy can be performed with a 200-mW,0.2-second, 200-µm retinal spot diameter exposure that produces a 40°to 60° retinal temperature rise with a retinal irradiance of 325 W/cm2 of argon laser 514-nm green radiation.62 Subvisiblelesion transpupillary thermotherapy for occult choroidal neovascularizationin age-related macular degeneration can be performed with an 800-mW, 60-second,3-mm retinal spot diameter exposure that produces a 10° retinal temperaturerise with a retinal irradiance of 7.5 W/cm2 of diode laser 810-nminfrared radiation.62

Laser pointers sold in the United States are required to have an outputpower less than 5 mW.1,2,5,63 Accidentalmomentary laser pointer exposure is safe because it is terminated in lessthan 0.25 second by normal aversion responses to uncomfortably brilliant light.1,2,5,64,65 Prolongedviewing of a laser pointer beam for more than 10 seconds is potentially harmful,1 which is the reason that these devices have warninglabels. Retinal irradiance produced by a laser pointer held close to the eyeis high because much of its power enters the eye and is concentrated intoa small retinal spot. Conversely, heat conduction cools small retinal spotsmore effectively than large ones, so retinal temperature rises for small-spot,10-second laser pointer and large-spot, 60-second transpupillary thermotherapyexposures are comparable.11,24,62 Thus,the most likely mechanism for the documented retinal damage caused by thislaser pointer exposure is threshold transpupillary thermotherapy–typephotocoagulation. In this case, the answers to all 6 diagnostic questionsgiven in Table 1 are "yes,"and this episode is a case of laser injury.

CASE 2
History

A prankster with a laser pointer momentarily exposed a middle-aged workerto the beam of an ordinary laser pointer from a distance of 9 m. The worker'svisual acuity after the incident was 20/20 OU. In the 4 years after the episode,the worker developed headaches, progressive photophobia, and severe sharpand longer-lasting dull eye pains. His photophobia was disabling even whenwearing sunglasses at ordinary indoor illumination levels. Visual field testsinitially documented unilateral hemianopsia, although findings from magneticresonance imaging were normal. Fluorescein angiography and eye examinationsby numerous ophthalmologists immediately after and subsequent to the episodedid not identify organic disease other than dry eye syndrome. The worker wasthen seen by a neuro-ophthalmologist, who diagnosed him as having photo-oculodyniasyndrome66 and attributed the origin of hispain, photophobia, and headaches to previous laser pointer exposure. The prankster'sfoolishness, the neuro-ophthalmologist's speculation that momentary laserpointer exposure can cause photo-oculodynia syndrome, and the worker's excellentemployment record and reported absence of health or occupational problemsbefore the incident probably influenced the defendant to settle this worker'sdamage claims out of court.

Analysis

Laser pointers are poor optical devices that contain a simple, inexpensivelens that collimates its diode laser's divergent, astigmatic beam. Assumingthat a laser pointer beam has a full 5-mW output and a standard beam divergenceof 1.5 milliradian, only 7% of the laser beam would enter a 4-mm-diameterpupil at a distance of 9 m. This exposure would produce a physiologic retinaltemperature rise of only 0.4°C, which could not cause retinal injury.Furthermore, at a distance of 9 m from an artificial pupil, a laser pointercan be aimed through a 7-mm aperture at best only 25% of the time (B.E.S.,D. J. Lund, BS, H. Zwick, PhD, D. A. Stamper, MS, P. R. Edsall, BS, J. W.Molchany, BS, unpublished data, 1999). Normal head movements and hand movementsreduce any retinal exposure even more, so a laser pointer injury from a distanceof 9 m is impossible without pupillary dilation and mechanically restrainingand aligning both the laser pointer aperture and the observer's pupil formore than 10 seconds.

We could find only a single article66 inthe medical literature on photo-oculodynia syndrome, which is described as"a category of chronic eye pain triggered by even minor ocular trauma, whenthere is no evidence of ongoing tissue damage or inflammation." The term wasproposed as an alternative to the standard term "photophobia."66 Only6 individuals with this condition were described in the article,66 3of whom reported less discomfort after cervical sympathetic ganglion block.There is no scientific basis for the neuro-ophthalmologist's speculation thata complex ocular pain syndrome could be induced by brief, nondamaging lightexposure. If that were the case, there would be millions of people with photo-oculodyniasyndrome due to flash photography and laser eye surgery. In this case, theanswers to diagnostic questions 1 and 6 in the Table 1 are "no," and this episode is not a case of laser injury.

CASE 3
History

A young male soldier viewing the exit aperture of a laser rangefinderthat he was holding accidentally exposed his right eye to several powerfulQ-switched, 1064-nm laser pulses.20 He reportedno pain but noticed an immediate decrease in vision in his right eye. Ophthalmicexamination 24 hours later revealed vitreous hemorrhage overlying 2 retinalholes in his right fovea. Fluorescein angiography 5 days after the incidentdocumented 3 prominent chorioretinal lesions with surrounding hyperfluorescence.Central macular scarring progressed in his right eye, and his visual acuity18 months after the laser exposure was 20/400 OD.

Analysis

Military Q-switched laser rangefinders and target designators are hazardousdevices with radiation outputs that far exceed maximum permissible exposurelevels.20,44,63 Injuriesto users and bystanders continue to occur infrequently despite careful precautionsand safety training. In this case, the answers to all 6 diagnostic questionsin the Table 1 are "yes," andthis episode is a case of laser injury.

CASE 4
History

A 40-year-old male soldier observed 3 red light pulses emitted in 3seconds by a tank approximately 3 km from his helicopter. He reported oculardiscomfort for approximately an hour after the mission. These symptoms wererelieved by acetaminophen use and did not recur. His visual acuity was 20/20OU after the incident and when tested several times during the next 5 years.The soldier experienced metamorphopsia 7 years after the episode. He soughtmedical care 2 years later, concerned that he might be going blind from alaser exposure. When examined at that time, his uncorrected visual acuitywas 20/20 OD and 20/50 OS, improvable to 20/20 OS, where his responses wereslower. Findings from anterior segment examination were normal, but therewere numerous yellow flecks in each macula, approximately 50 to 100 µmin longest lateral extent. A foveal fleck was present in both eyes. Earlyfluorescein angiogram frames documented that the flecks had central hypofluorescencewith a surrounding zone of hyperfluorescence. The hyperfluorescence fadedin later images.

Analysis

The soldier did not undergo a thorough retinal examination or retinalimaging studies until 9 years after the tank observation incident. At thattime, ophthalmoscopy and fluorescein angiography documented pattern RPE dystrophy.6769 We know of no scientificevidence to suggest that this problem is caused or accelerated by light exposure.The tank that the soldier observed was probably equipped with a Q-switchedruby laser (694.3-nm, red) rangefinder. Q-switched retinal laser injuriestypically cause immediate vision loss and a prominent, permanent chorioretinalscar. The soldier did not have vision loss after the incident or a chorioretinalscar consistent with laser injury. Furthermore, the type of ruby laser rangefinderknown to be on the kind of tank he observed produces a retinal exposure farbelow international safety standards at a 3-km viewing distance.63,70 Inthis case, the answers to questions 1 and 6 in the Table 1 are "no," and this episode is not a case of laser injury.

CASE 5
History

A middle-aged photographer had pain from a corneal abrasion after takingphotographs of a ship. He surmised that there had been a laser device on theship and that a laser injury had caused his discomfort. His visual acuitywas 20/20 OU after the episode. A retina specialist found 3 tiny (10- to 20-µm)RPE window defects in one eye on a fluorescein angiogram and ascribed themto laser injury. Findings from optical coherence tomography were normal. Amslergrid test results were highly variable, and the locations of grid abnormalitiesand RPE defects were inconsistent.

During the next 5 years, the photographer developed chronic headaches,photophobia, blurred vision, and nighttime driving and reading difficulties.He reported episodes of monocular diplopia. He also reported a constellationof terrible, intermittently disabling, periodic, and chronic eye and facepains. The initial retina specialist ascribed all these symptoms to laserinjury. He also diagnosed a laser exposure in one of the photographer's companionspresent at the incident who reported similar symptoms but had completely normalfindings on retinal examination and fluorescein angiograms.

A review of the photographer's voluminous medical history several yearsafter the episode revealed dry eye syndrome, map-dot-fingerprint corneal dystrophy,temporomandibular joint syndrome, iritis, conjunctivitis, migratory arthritis,plantar fasciitis, chronic low back pain, epididymitis, and recurrent diarrhea.Most of the systemic problems predated the purported laser incident. New RPEdefects developed after the incident. The photographer had not been diagnosedpreviously as having reactive arthritis (Reiter syndrome),71 whichcan produce small RPE defects.72,73 Noevidence of laser injury was found in the years after the incident by 17 otherophthalmologists, including 5 neuro-ophthalmologists and 8 retina specialists.A trial was held 5 years after the incident in which the retina specialistwho made the initial diagnosis steadfastly maintained that all the photographer'ssymptoms were due to retinal laser injury. A jury ruled against the photographer'sclaim for damages against the ship owner.

Analysis

No laser was ever identified in this case despite a search of the ship.A costly, time-consuming chain of events was precipitated by the initial retinaspecialist's (1) failure to attach significance to an association betweenthe photographer's symptoms and his complex past medical history, (2) quickdiagnosis of a laser injury, (3) subsequent attribution of the photographer'sgrowing list of pains and visual complaints to a laser injury, and (4) diagnosisof laser exposure in the photographer's associate based on symptoms in theabsence of retinal or angiographic abnormalities. As noted previously herein,the few tiny RPE defects on which the initial diagnosis was based are common.Even if these defects were due to threshold laser effects, they could nothave caused the photographer's reported problems or millions of patients wouldbe afflicted with similar problems after routine retinal laser surgery. Inthis case, the answer to question 1 in the Table 1 is "yes." Regarding question 2, there were angiographicfindings but no optical coherence tomography abnormalities. The answers toquestions 3, 4, and 5 are "no." Question 6 cannot be answered because therewas no known laser source. The patient had real complaints, but they werecaused by preexisting autoimmune problems rather than by laser injury.

Accidental laser injuries are rare. Complaints of laser injuries aremore numerous. The ease of laser injury diagnosis is proportional to the severityof the injury. In ambiguous cases, subtle retinal findings should have excellentvisual prognoses and clinical outcomes. Absence of a retinal lesion does notprove absence of laser exposure. Nonetheless, retinal laser lesions that causeserious visual problems are readily apparent ophthalmoscopically and angiographically.They remodel in the months that follow an injury. Actual retinal laser injuriesdo not cause chronic eye, face, or head pains. Thus, pains in the months thatfollow a real or imagined retinal laser injury are nonorganic or the resultof regional or systemic problems unrelated to the laser incident. Fundus photography,fluorescein angiography, and optical coherence tomography should be performedas quickly as possible after a laser incident to document findings for analysisand comparison with subsequent tests.

The legal system has an uneasy relationship with "science" and "truth."Facts are welcomed by the attorneys of plaintiffs and defendants only whenthey support their clients' biases and best interests. Medical "experts" arehired to advocate opinions that are often unrelated to evidenced-based medicalpractice. Juries struggle to separate reality from fiction. Attorneys maycraft convincing cases for "victims" who claim severe pain and vision losseven when they have no physical evidence of injury. Patients with severe nonorganicproblems of psychiatric origin or organic problems originating from problemsunrelated to an injury may be dissuaded from solving these problems by hopesof financial gain.

A clinician's intransigence and misunderstanding of laser injury characteristicscan be powerful allies of tort attorneys. When retinal laser injuries arealleged but uncertain because objective findings are minimal or absent, laserinjury diagnosis should be deferred pending completion of a rigorous reviewand analysis of relevant laser devices and the purported victim's medicalhistory, clinical course, ophthalmic examination findings, and retinal imagingstudy results. Such a review and analysis may take weeks or months to completeauthoritatively. Hasty diagnoses should be avoided because they can createserious and lengthy medical, legal, and social issues. The 6 key diagnosticquestions given in the Table 1 providea framework for evaluating potential laser injuries. The diagnosis of a laserinjury should be evidence based, not a matter for speculation or conjecture.Retinal laser injuries do not cause chronic pain, and visually significantretinal laser injuries are apparent ophthalmoscopically and angiographically.

Correspondence: Martin A. Mainster, PhD, MD, Department of Ophthalmology,University of Kansas Medical School, 3901 Rainbow Blvd, Mail Stop 3009, KansasCity, KS 66160-7379 (mmainste@kumc.edu).

Submitted for publication August 4, 2003; final revision received February12, 2004; accepted March 25, 2004.

This study was supported in part by the Kansas Lions Sight FoundationInc (Manhattan).

Sliney  DHDennis  JE Safety concerns about laser pointers. J Laser Appl. 1994;6159- 164
Link to Article
Mainster  MATimberlake  GTWarren  KASliney  DH Pointers on laser pointers. Ophthalmology. 1997;1041213- 1214
PubMed Link to Article
Rockwell  RJ  JrErtle  WJMoss  CE Safety recommendation for laser pointers. J Laser Appl. 1998;10174- 180
PubMed Link to Article
Marshall  J The safety of laser pointers: myths and realities. Br J Ophthalmol. 1998;821335- 1338
PubMed Link to Article
Mainster  MA Blinded by the light—not! Arch Ophthalmol. 1999;1171547- 1548
PubMed Link to Article
Sliney  DHWolbarsht  ML Safety With Lasers and Other Optical Sources: A ComprehensiveHandbook.  New York, NY Plenum Press1980;
Mainster  MAHam  WT  JrDelori  FC Potential retinal hazards: instrument and environmental light sources. Ophthalmology. 1983;90927- 932
PubMed Link to Article
Mellerio  J Light effects on the retina. Albert  DMJakobiec  FAedsPrinciples andPractice of Ophthalmology. 1 Philadelphia, Pa WB Saunders Co1994;1326- 1345
Mainster  MATurner  PL Photic retinal injury and safety. Ryan  SJOgden  TEHinton  DRSchachat  APedsRetina. 23rd St Louis, Mo Mosby Inc2001;1797- 1809
Boettner  EAWolter  JR Transmission of the ocular media. Invest Ophthalmol. 1962;1776- 783
Mainster  MAWhite  TJAllen  RG Spectral dependence of retinal damage produced by intense light sources. J Opt Soc Am. 1970;60848- 855
PubMed Link to Article
Mainster  MA Decreasing retinal photocoagulation damage: principles and techniques. Semin Ophthalmol. 1999;14200- 209
PubMed Link to Article
Sliney  DHTrokel  SL Medical Lasers and Their Safe Use.  New York, NY Springer-Verlag NY Inc1993;
Mainster  MA Finding your way in the photoforest: laser effects for clinicians. Ophthalmology. 1984;91886- 888
Link to Article
Marshall  J Structural aspects of laser-induced damage and their functional implications. Health Phys. 1989;56617- 624
PubMed Link to Article
Glickman  RD Phototoxicity to the retina: mechanisms of damage. Int J Toxicol. 2002;21473- 490
PubMed Link to Article
Boldrey  EELittle  HLFlocks  MVassiliadis  A Retinal injury due to industrial laser burns. Ophthalmology. 1981;88101- 107
PubMed Link to Article
Mainster  MASliney  DHBelcher  CDIBuzney  SM Laser photodisruptors: damage mechanisms, instrument design and safety. Ophthalmology. 1983;90973- 991
PubMed Link to Article
Wolfe  JA Laser retinal injury. Mil Med. 1985;150177- 185
PubMed
Stuck  BEZwick  HMolchany  JWLund  BJGagliano  DA Accidental human laser retinal injuries from military laser systems. SPIE Proceedings. 2674 Bellingham,Wash SPIE–The International Society for Optical Engineering1996;7- 20
Thach  AB Laser injuries of the eye. Int Ophthalmol Clin. 1999;3913- 27
PubMed Link to Article
Barkana  YBelkin  M Laser eye injuries. Surv Ophthalmol. 2000;44459- 478
PubMed Link to Article
Mainster  MA Retinal laser accidents: mechanisms, managment and rehabilitation. J Laser Appl. 2000;123- 9
Link to Article
Mainster  MAWhite  TJTips  JHWilson  PW Retinal-temperature increases produced by intense light sources. J Opt Soc Am. 1970;60264- 270
PubMed Link to Article
Cain  CPWelch  AJ Measured and predicted laser-induced temperature rises in the rabbitfundus. Invest Ophthalmol. 1974;1360- 70
PubMed
Priebe  LACain  CPWelch  AJ Temperature rise required for production of minimal lesions in theMacaca mulatta retina. Am J Ophthalmol. 1975;79405- 413
PubMed
Birngruber  RGabel  VPHillenkamp  F Experimental studies of laser thermal retinal injury. Health Phys. 1983;44519- 531
PubMed Link to Article
Roider  JHillenkamp  FFlotte  TBirngruber  R Microphotocoagulation: selective effects of repetitive short laserpulses. Proc Natl Acad Sci U S A. 1993;908643- 8647
PubMed Link to Article
Kanski  JJ Anterior segment complications of retinal photocoagulation. Am J Ophthalmol. 1975;79424- 427
PubMed
Little  HL Complications of argon laser retinal photocoagulation: a five-yearstudy. Int Ophthalmol Clin. 1976;16145- 159
PubMed
Irvine  WDSmiddy  WENicholson  DH Corneal and iris burns with the laser indirect ophthalmoscope. Am J Ophthalmol. 1990;110311- 313
PubMed
Woon  WHffytche  TJHamilton  AMMarshall  J Iris clipping of a diode laser beam when performing retinal photocoagulation. Br J Ophthalmol. 1991;75386- 390
PubMed Link to Article
Bloom  SMMahl  CFSchiller  SB Lenticular burns following argon panretinal photocoagulation. Br J Ophthalmol. 1992;76630- 631
PubMed Link to Article
Pogrebniak  AEBolling  JPStewart  MW Argon laser-induced cataract in an infant with retinopathy of prematurity. Am J Ophthalmol. 1994;117261- 262
PubMed
Noell  WKWalker  VSKang  BSBerman  S Retinal damage by light in rats. Invest Ophthalmol. 1966;5450- 473
PubMed
Ham  WT  JrMueller  HASliney  DH Retinal sensitivity to damage from short wavelength light. Nature. 1976;260153- 155
PubMed Link to Article
Kremers  JJvan Norren  D Two classes of photochemical damage of the retina. Lasers Light Ophthalmol. 1988;241- 52
Schmidt-Erfurth  UHasan  T Mechanisms of action of photodynamic therapy with verteporfin for thetreatment of age-related macular degeneration. Surv Ophthalmol. 2000;45195- 214
PubMed Link to Article
Stamper  DALund  DJMolchany  JWStuck  BE Human pupil and eyelid response to intense laser light: implicationsfor protection. Percept Mot Skills. 2002;95775- 782
PubMed Link to Article
Gabel  VPBirngruber  RLorenz  BLang  GK Clinical observations of six cases of laser injury to the eye. Health Phys. 1989;56705- 710
PubMed Link to Article
Rockwell  RJ  Jr Laser accidents: reviewing thirty years of incidents: what are theconcerns—old and new? J Laser Appl. 1994;6203- 211
Link to Article
Thach  ABLopez  PFSnady-McCoy  LCGolub  BMFrambach  DA Accidental Nd:YAG laser injuries to the macula. Am J Ophthalmol. 1995;119767- 773
PubMed
Ness  JWHoxie  SW Database structure for the Laser Accident and Incident Registry (LAIR). SPIE Proceedings. 2974 Bellingham,Wash SPIE–The International Society for Optical Engineering1997;2- 7
Stuck  BEZwick  HLund  BJScales  DKGagliano  DA Accidental human retinal injuries by laser exposure: implications tolaser safety. Int Laser Safety Conference Proc. 1997;3576- 585
Allen  RDBrown  J  JrZwick  HSchuschereba  STLund  DJStuck  BE Laser-induced macular holes demonstrate impaired choroidal perfusion. Retina. 2004;2492- 97
PubMed Link to Article
Mellerio  JMarshall  JTengroth  BAnderberg  BWolbarsht  M Battlefield laser weapons: an assessment of systems, hazards, injuriesand ophthalmic resources required for treatment. Lasers Light Ophthalmol. 1991;441- 67
Tengroth  BAnderberg  B Blinding laser weapons. Lasers Light Ophthalmol. 1991;435- 39
Hochman  MASeery  CMZarbin  MA Pathophysiology and management of subretinal hemorrhage. Surv Ophthalmol. 1997;42195- 213
PubMed Link to Article
Drews  RC Organic versus functional ocular problems. Int Ophthalmol Clin. 1967;7665- 696
PubMed
Kramer  KKLa Piana  FGAppleton  B Ocular malingering and hysteria: diagnosis and management. Surv Ophthalmol. 1979;2489- 96
PubMed Link to Article
Keltner  JLMay  WNJohnson  CAPost  RB The California syndrome: functional visual complaints with potentialeconomic impact. Ophthalmology. 1985;92427- 435
PubMed Link to Article
Keltner  JL The California syndrome: a threat to all. Arch Ophthalmol. 1988;1061053- 1054
PubMed Link to Article
Fahle  MMohn  G Assessment of visual function in suspected ocular malingering. Br J Ophthalmol. 1989;73651- 654
PubMed Link to Article
Bose  SKupersmith  MJ Neuro-ophthalmologic presentations of functional visual disorders. Neurol Clin. 1995;13321- 339
PubMed
Barsky  AJBorus  JF Somatization and medicalization in the era of managed care. JAMA. 1995;2741931- 1934
PubMed Link to Article
Martin  TJ Threshold perimetry of each eye with both eyes open in patients withmonocular functional (nonorganic) and organic vision loss. Am J Ophthalmol. 1998;125857- 864
PubMed Link to Article
Barsky  AJBorus  JF Functional somatic syndromes. Ann Intern Med. 1999;130910- 921
PubMed Link to Article
Mojon  DSSchlapfer  TE Nonorganic disorders in ophthalmology: overview of diagnosis and therapy. Klin Monatsbl Augenheilkd. 2001;218298- 304
PubMed Link to Article
Graf  MHRoesen  J Ocular malingering: a surprising visual acuity test. Arch Ophthalmol. 2002;;120756- 760
PubMed Link to Article
Scott  JAEgan  RA Prevalence of organic neuro-ophthalmologic disease in patients withfunctional visual loss. Am J Ophthalmol. 2003;135670- 675
PubMed Link to Article
Sell  CHBryan  JS Maculopathy from handheld diode laser pointer. Arch Ophthalmol. 1999;1171557- 1558
PubMed Link to Article
Mainster  MAReichel  E Transpupillary thermotherapy for age-related macular degeneration:long-pulse photocoagulation, apoptosis, and heat shock proteins. Ophthalmic Surg Lasers. 2000;31359- 373
PubMed
 American National Standard for the Safe Use of Lasers, ANSI Z136.1-2000.  Washington, DC American National Standards Institute2000;
Mensah  EVafidis  GMarshall  J Laser pointers: the facts, media hype, and hysteria. Lancet. 1998;3511291
PubMed Link to Article
Robertson  DMLim  THSalomao  DRLink  TPRowe  RLMcLaren  JW Laser pointers and the human eye: a clinicopathologic study. Arch Ophthalmol. 2000;1181686- 1691
PubMed Link to Article
Fine  PGDigre  KB A controlled trial of regional sympatholysis in the treatment of photo-oculodyniasyndrome. J Neuroophthalmol. 1995;1590- 94
PubMed Link to Article
Marmor  MFMcNamara  JA Pattern dystrophy of the retinal pigment epithelium and geographicatrophy of the macula. Am J Ophthalmol. 1996;122382- 392
PubMed
Zhang  KGaribaldi  DCLi  YGreen  WRZack  DJ Butterfly-shaped pattern dystrophy: a genetic, clinical, and histopathologicalreport. Arch Ophthalmol. 2002;120485- 490
PubMed Link to Article
Quillen  DABlodi  BA Clinical Retina.  Chicago, Ill American Medical Association Press2002;
International Commission on Non-Ionizing Radiation Protection, Guidelines on limits of exposure to broad-band incoherent optical radiation(0.38 to 3 µM). Health Phys. 1997;73539- 554
PubMed
Lee  DABarker  SMSu  WPAllen  GLLiesegang  TJIlstrup  DM The clinical diagnosis of Reiter's syndrome: ophthalmic and nonophthalmicaspects. Ophthalmology. 1986;93350- 356
PubMed Link to Article
Conway  RMGraham  SLLassere  M Incomplete Reiter's syndrome with focal involvement of the posteriorsegment. Aust N Z J Ophthalmol. 1995;2363- 66
PubMed Link to Article
Needham  ADHarding  SPCarey  P Bilateral multifocal choroiditis in Reiter syndrome. Arch Ophthalmol. 1997;115684- 685
PubMed Link to Article

Figures

Place holder to copy figure label and caption
Figure 1.

A mild accidental laser injury.A 21-year-old female technician accidentally looked into the exit apertureof a repetitively pulsed infrared Nd:YAG 1064-nm target designation laser.The technician reported seeing 2 or 3 yellowish flashes at the time of thelaser exposure. Visual acuity in her left eye was 20/50 a few hours afterthe accident and 20/200 two days later; visual acuity returned to 20/15 twomonths after the injury. A, Four days after the accident, there is fovealedema, surrounding subretinal hemorrhage, and several small, hypopigmentedretinal pigment epithelium lesions. B, One month after the accident, fovealedema and subretinal hemorrhage have resolved, and a small area of fovealretinal pigment epithelium degeneration has developed.

Graphic Jump Location
Place holder to copy figure label and caption
Figure 2.

A severe accidental laser injury.A 20-year-old male technician deliberately viewed the output of a laser rangefinderdespite reading warning labels and undergoing laser safety training. He reportedimmediate vision loss in his right eye, with some improvement after 5 minutes.He sought medical assistance 18 hours after the injury, at which time visualacuity was 20/150 OD, where there was a macular and vitreous hemorrhage. Thevitreous hemorrhage cleared, and his visual acuity returned to 20/70 duringthe next month. After the accident, visual acuity was 20/40 OD at 1 year and20/30 OD at 2 years. A, Ten weeks after the injury, there is a full-thicknessmacular hole with surrounding retinal pigment epithelium depigmentation inthe right eye. B, Fluorescein angiography documents a prominent foveal windowdefect due to retinal pigment epithelium atrophy. C, Optical coherence tomographydocuments a macular hole with increased reflectivity at its base. This increasedreflectivity is a characteristic of laser-induced macular holes.45 Itis caused by choriocapillaris scarring, so the prognosis for visual improvementafter macular surgery may be worse for laser-induced than idiopathic macularholes.45

Graphic Jump Location

Tables

Table Graphic Jump LocationSix Questions That Facilitate the Diagnosis of Alleged Retinal LaserInjuries

References

Sliney  DHDennis  JE Safety concerns about laser pointers. J Laser Appl. 1994;6159- 164
Link to Article
Mainster  MATimberlake  GTWarren  KASliney  DH Pointers on laser pointers. Ophthalmology. 1997;1041213- 1214
PubMed Link to Article
Rockwell  RJ  JrErtle  WJMoss  CE Safety recommendation for laser pointers. J Laser Appl. 1998;10174- 180
PubMed Link to Article
Marshall  J The safety of laser pointers: myths and realities. Br J Ophthalmol. 1998;821335- 1338
PubMed Link to Article
Mainster  MA Blinded by the light—not! Arch Ophthalmol. 1999;1171547- 1548
PubMed Link to Article
Sliney  DHWolbarsht  ML Safety With Lasers and Other Optical Sources: A ComprehensiveHandbook.  New York, NY Plenum Press1980;
Mainster  MAHam  WT  JrDelori  FC Potential retinal hazards: instrument and environmental light sources. Ophthalmology. 1983;90927- 932
PubMed Link to Article
Mellerio  J Light effects on the retina. Albert  DMJakobiec  FAedsPrinciples andPractice of Ophthalmology. 1 Philadelphia, Pa WB Saunders Co1994;1326- 1345
Mainster  MATurner  PL Photic retinal injury and safety. Ryan  SJOgden  TEHinton  DRSchachat  APedsRetina. 23rd St Louis, Mo Mosby Inc2001;1797- 1809
Boettner  EAWolter  JR Transmission of the ocular media. Invest Ophthalmol. 1962;1776- 783
Mainster  MAWhite  TJAllen  RG Spectral dependence of retinal damage produced by intense light sources. J Opt Soc Am. 1970;60848- 855
PubMed Link to Article
Mainster  MA Decreasing retinal photocoagulation damage: principles and techniques. Semin Ophthalmol. 1999;14200- 209
PubMed Link to Article
Sliney  DHTrokel  SL Medical Lasers and Their Safe Use.  New York, NY Springer-Verlag NY Inc1993;
Mainster  MA Finding your way in the photoforest: laser effects for clinicians. Ophthalmology. 1984;91886- 888
Link to Article
Marshall  J Structural aspects of laser-induced damage and their functional implications. Health Phys. 1989;56617- 624
PubMed Link to Article
Glickman  RD Phototoxicity to the retina: mechanisms of damage. Int J Toxicol. 2002;21473- 490
PubMed Link to Article
Boldrey  EELittle  HLFlocks  MVassiliadis  A Retinal injury due to industrial laser burns. Ophthalmology. 1981;88101- 107
PubMed Link to Article
Mainster  MASliney  DHBelcher  CDIBuzney  SM Laser photodisruptors: damage mechanisms, instrument design and safety. Ophthalmology. 1983;90973- 991
PubMed Link to Article
Wolfe  JA Laser retinal injury. Mil Med. 1985;150177- 185
PubMed
Stuck  BEZwick  HMolchany  JWLund  BJGagliano  DA Accidental human laser retinal injuries from military laser systems. SPIE Proceedings. 2674 Bellingham,Wash SPIE–The International Society for Optical Engineering1996;7- 20
Thach  AB Laser injuries of the eye. Int Ophthalmol Clin. 1999;3913- 27
PubMed Link to Article
Barkana  YBelkin  M Laser eye injuries. Surv Ophthalmol. 2000;44459- 478
PubMed Link to Article
Mainster  MA Retinal laser accidents: mechanisms, managment and rehabilitation. J Laser Appl. 2000;123- 9
Link to Article
Mainster  MAWhite  TJTips  JHWilson  PW Retinal-temperature increases produced by intense light sources. J Opt Soc Am. 1970;60264- 270
PubMed Link to Article
Cain  CPWelch  AJ Measured and predicted laser-induced temperature rises in the rabbitfundus. Invest Ophthalmol. 1974;1360- 70
PubMed
Priebe  LACain  CPWelch  AJ Temperature rise required for production of minimal lesions in theMacaca mulatta retina. Am J Ophthalmol. 1975;79405- 413
PubMed
Birngruber  RGabel  VPHillenkamp  F Experimental studies of laser thermal retinal injury. Health Phys. 1983;44519- 531
PubMed Link to Article
Roider  JHillenkamp  FFlotte  TBirngruber  R Microphotocoagulation: selective effects of repetitive short laserpulses. Proc Natl Acad Sci U S A. 1993;908643- 8647
PubMed Link to Article
Kanski  JJ Anterior segment complications of retinal photocoagulation. Am J Ophthalmol. 1975;79424- 427
PubMed
Little  HL Complications of argon laser retinal photocoagulation: a five-yearstudy. Int Ophthalmol Clin. 1976;16145- 159
PubMed
Irvine  WDSmiddy  WENicholson  DH Corneal and iris burns with the laser indirect ophthalmoscope. Am J Ophthalmol. 1990;110311- 313
PubMed
Woon  WHffytche  TJHamilton  AMMarshall  J Iris clipping of a diode laser beam when performing retinal photocoagulation. Br J Ophthalmol. 1991;75386- 390
PubMed Link to Article
Bloom  SMMahl  CFSchiller  SB Lenticular burns following argon panretinal photocoagulation. Br J Ophthalmol. 1992;76630- 631
PubMed Link to Article
Pogrebniak  AEBolling  JPStewart  MW Argon laser-induced cataract in an infant with retinopathy of prematurity. Am J Ophthalmol. 1994;117261- 262
PubMed
Noell  WKWalker  VSKang  BSBerman  S Retinal damage by light in rats. Invest Ophthalmol. 1966;5450- 473
PubMed
Ham  WT  JrMueller  HASliney  DH Retinal sensitivity to damage from short wavelength light. Nature. 1976;260153- 155
PubMed Link to Article
Kremers  JJvan Norren  D Two classes of photochemical damage of the retina. Lasers Light Ophthalmol. 1988;241- 52
Schmidt-Erfurth  UHasan  T Mechanisms of action of photodynamic therapy with verteporfin for thetreatment of age-related macular degeneration. Surv Ophthalmol. 2000;45195- 214
PubMed Link to Article
Stamper  DALund  DJMolchany  JWStuck  BE Human pupil and eyelid response to intense laser light: implicationsfor protection. Percept Mot Skills. 2002;95775- 782
PubMed Link to Article
Gabel  VPBirngruber  RLorenz  BLang  GK Clinical observations of six cases of laser injury to the eye. Health Phys. 1989;56705- 710
PubMed Link to Article
Rockwell  RJ  Jr Laser accidents: reviewing thirty years of incidents: what are theconcerns—old and new? J Laser Appl. 1994;6203- 211
Link to Article
Thach  ABLopez  PFSnady-McCoy  LCGolub  BMFrambach  DA Accidental Nd:YAG laser injuries to the macula. Am J Ophthalmol. 1995;119767- 773
PubMed
Ness  JWHoxie  SW Database structure for the Laser Accident and Incident Registry (LAIR). SPIE Proceedings. 2974 Bellingham,Wash SPIE–The International Society for Optical Engineering1997;2- 7
Stuck  BEZwick  HLund  BJScales  DKGagliano  DA Accidental human retinal injuries by laser exposure: implications tolaser safety. Int Laser Safety Conference Proc. 1997;3576- 585
Allen  RDBrown  J  JrZwick  HSchuschereba  STLund  DJStuck  BE Laser-induced macular holes demonstrate impaired choroidal perfusion. Retina. 2004;2492- 97
PubMed Link to Article
Mellerio  JMarshall  JTengroth  BAnderberg  BWolbarsht  M Battlefield laser weapons: an assessment of systems, hazards, injuriesand ophthalmic resources required for treatment. Lasers Light Ophthalmol. 1991;441- 67
Tengroth  BAnderberg  B Blinding laser weapons. Lasers Light Ophthalmol. 1991;435- 39
Hochman  MASeery  CMZarbin  MA Pathophysiology and management of subretinal hemorrhage. Surv Ophthalmol. 1997;42195- 213
PubMed Link to Article
Drews  RC Organic versus functional ocular problems. Int Ophthalmol Clin. 1967;7665- 696
PubMed
Kramer  KKLa Piana  FGAppleton  B Ocular malingering and hysteria: diagnosis and management. Surv Ophthalmol. 1979;2489- 96
PubMed Link to Article
Keltner  JLMay  WNJohnson  CAPost  RB The California syndrome: functional visual complaints with potentialeconomic impact. Ophthalmology. 1985;92427- 435
PubMed Link to Article
Keltner  JL The California syndrome: a threat to all. Arch Ophthalmol. 1988;1061053- 1054
PubMed Link to Article
Fahle  MMohn  G Assessment of visual function in suspected ocular malingering. Br J Ophthalmol. 1989;73651- 654
PubMed Link to Article
Bose  SKupersmith  MJ Neuro-ophthalmologic presentations of functional visual disorders. Neurol Clin. 1995;13321- 339
PubMed
Barsky  AJBorus  JF Somatization and medicalization in the era of managed care. JAMA. 1995;2741931- 1934
PubMed Link to Article
Martin  TJ Threshold perimetry of each eye with both eyes open in patients withmonocular functional (nonorganic) and organic vision loss. Am J Ophthalmol. 1998;125857- 864
PubMed Link to Article
Barsky  AJBorus  JF Functional somatic syndromes. Ann Intern Med. 1999;130910- 921
PubMed Link to Article
Mojon  DSSchlapfer  TE Nonorganic disorders in ophthalmology: overview of diagnosis and therapy. Klin Monatsbl Augenheilkd. 2001;218298- 304
PubMed Link to Article
Graf  MHRoesen  J Ocular malingering: a surprising visual acuity test. Arch Ophthalmol. 2002;;120756- 760
PubMed Link to Article
Scott  JAEgan  RA Prevalence of organic neuro-ophthalmologic disease in patients withfunctional visual loss. Am J Ophthalmol. 2003;135670- 675
PubMed Link to Article
Sell  CHBryan  JS Maculopathy from handheld diode laser pointer. Arch Ophthalmol. 1999;1171557- 1558
PubMed Link to Article
Mainster  MAReichel  E Transpupillary thermotherapy for age-related macular degeneration:long-pulse photocoagulation, apoptosis, and heat shock proteins. Ophthalmic Surg Lasers. 2000;31359- 373
PubMed
 American National Standard for the Safe Use of Lasers, ANSI Z136.1-2000.  Washington, DC American National Standards Institute2000;
Mensah  EVafidis  GMarshall  J Laser pointers: the facts, media hype, and hysteria. Lancet. 1998;3511291
PubMed Link to Article
Robertson  DMLim  THSalomao  DRLink  TPRowe  RLMcLaren  JW Laser pointers and the human eye: a clinicopathologic study. Arch Ophthalmol. 2000;1181686- 1691
PubMed Link to Article
Fine  PGDigre  KB A controlled trial of regional sympatholysis in the treatment of photo-oculodyniasyndrome. J Neuroophthalmol. 1995;1590- 94
PubMed Link to Article
Marmor  MFMcNamara  JA Pattern dystrophy of the retinal pigment epithelium and geographicatrophy of the macula. Am J Ophthalmol. 1996;122382- 392
PubMed
Zhang  KGaribaldi  DCLi  YGreen  WRZack  DJ Butterfly-shaped pattern dystrophy: a genetic, clinical, and histopathologicalreport. Arch Ophthalmol. 2002;120485- 490
PubMed Link to Article
Quillen  DABlodi  BA Clinical Retina.  Chicago, Ill American Medical Association Press2002;
International Commission on Non-Ionizing Radiation Protection, Guidelines on limits of exposure to broad-band incoherent optical radiation(0.38 to 3 µM). Health Phys. 1997;73539- 554
PubMed
Lee  DABarker  SMSu  WPAllen  GLLiesegang  TJIlstrup  DM The clinical diagnosis of Reiter's syndrome: ophthalmic and nonophthalmicaspects. Ophthalmology. 1986;93350- 356
PubMed Link to Article
Conway  RMGraham  SLLassere  M Incomplete Reiter's syndrome with focal involvement of the posteriorsegment. Aust N Z J Ophthalmol. 1995;2363- 66
PubMed Link to Article
Needham  ADHarding  SPCarey  P Bilateral multifocal choroiditis in Reiter syndrome. Arch Ophthalmol. 1997;115684- 685
PubMed Link to Article

Correspondence

CME


You need to register in order to view this quiz.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 33

Related Content

Customize your page view by dragging & repositioning the boxes below.

Articles Related By Topic
Related Collections