0
We're unable to sign you in at this time. Please try again in a few minutes.
Retry
We were able to sign you in, but your subscription(s) could not be found. Please try again in a few minutes.
Retry
There may be a problem with your account. Please contact the AMA Service Center to resolve this issue.
Contact the AMA Service Center:
Telephone: 1 (800) 262-2350 or 1 (312) 670-7827  *   Email: subscriptions@jamanetwork.com
Error Message ......
Epidemiology |

Infectious Disease Risk Factors of Corneal Graft Donors FREE

Sohela S. Hassan, DrPH; Kirk R. Wilhelmus, MD, PhD; Patricia Dahl, CEBT; Gregory C. Davis, CEBT; Russell T. Roberts, CEBT; Kevin W. Ross, MS, MPH; Bruce H. Varnum, MS; Medical Review Subcommittee of the Eye Bank Association of America
[+] Author Affiliations

Author Affiliations:Department of Ophthalmology, Cullen Eye Institute (Drs Hassan and Wilhelmus) and Lions Eye Bank of Texas (Mr Roberts), Baylor College of Medicine, Houston; The Eye-Bank for Sight Restoration, Inc, New York, New York (Ms Dahl); Donor Network of Arizona, Phoenix (Mr Davis); Midwest Eye-Banks, Ann Arbor, Michigan (Mr Ross); and Georgia Eye Bank, Inc, Atlanta (Mr Varnum).


Section Editor: Leslie Hyman, PhD

More Author Information
Arch Ophthalmol. 2008;126(2):235-239. doi:10.1001/archophthalmol.2007.45.
Text Size: A A A
Published online

Objective  To determine how donor health status affects the risk of infection after corneal transplant.

Methods  An adverse reaction surveillance registry was used to conduct a matched case-control study among transplanted donor corneas from January 1, 1994, to December 31, 2003. Cases comprised 162 reports of endophthalmitis after penetrating keratoplasty including 121 with microbial recovery, of which 59 had concordant donor and recipient microbial isolates. Two controls were matched to each case by surgery date. Conditional logistic regression estimated adjusted odds ratios with 95% confidence intervals according to the premortem status of decedent donors.

Results  Postkeratoplasty endophthalmitis was associated with recent hospitalization (odds ratio, 2.84; 95% confidence interval, 1.61-4.98) and fatal cancer (odds ratio, 2.46; 95% confidence interval, 1.53-3.97) among donors. Endophthalmitis appeared more likely with tissues transplanted longer than 5 days after donation (odds ratio, 1.55; 95% confidence interval, 1.02-2.35). The prevalence of concordant microbial isolates from donors and recipients was greater among fungal endophthalmitis than among bacterial endophthalmitis (P < .001).

Conclusions  Corneal grafts with eye tissue obtained from donors dying in the hospital or with cancer may have an increased risk of postsurgical endophthalmitis, possibly due to donor-to-host microbial transmission. Together with donor screening and processing, improvements in microbiological control may reduce infection associated with corneal transplant.

Infection is an uncommon but serious complication of corneal transplant.13Most infected eyes lose vision or become blind.1,2,4The preemption and deterrence of transmissible diseases are leading concerns in eye and tissue banking.5,6

Judicious donor screening and good tissue practices aim to avert infections associated with transplant. Preventive strategies include deferral of donors with septicemia or endocarditis,79antiseptic preparation and aseptic retrieval of donor tissue,911and anti-infective preservation.12,13Microbiological assessment may also be done before distribution14or at keratoplasty.15

Opportunities for further measures are excluding donors with prolonged hospitalization or malignant neoplasm16,17and shortening storage of refrigerated tissue before surgery.18To examine how the donor's health status and the donation process influence postsurgical infection, we undertook a matched case-control study of postsurgical infections associated with corneal transplant that were reported to a national surveillance registry in the United States.

The Eye Bank Association of America systematically monitors adverse reactions of corneal transplant that are potentially attributable to donor ocular tissue.19Distributing eye banks seek postoperative outcomes from corneal surgeons and, if notified of a reportable infection, track the mated donor cornea, review donor corneoscleral rim cultures submitted at the surgeon's discretion during keratoplasty, and gather available microbiological results of intraocular fluids obtained from the corneal graft recipient. Adverse reaction information is forwarded to the source eye bank and submitted to the Eye Bank Association of America on a case report form that records the date of corneal transplant, donor age, cause of donor death, donation facility, interval between death and corneoscleral excision or enucleation, duration from recovery to transplant, and microbial species isolated from donor and recipient eyes. Data are entered into the adverse reaction registry, which is masked to personal identifiers of donors, surgeons, and recipients.

This matched case-control study nested in the surveillance registry was approved by the institutional review board at Baylor College of Medicine and endorsed by the Eye Bank Association of America Medical Advisory Board. Cases included all postsurgical endophthalmitis reported by source eye banks in the United States that followed corneal transplant performed between January 1, 1994, and December 31, 2003. The study period occurred during the use of Optisol-GS corneal storage medium (Bausch & Lomb Surgical, Irvine, California) and ended 2 years before data set construction to allow for complete reporting. While the sample size was constrained to 162 available cases, the power of this 1:2 matched case-control study was estimated to be 90% for detecting an odds ratio (OR) of 2.00 at a significance level of .05.20

We aimed to have a control group that was representative of donor corneas distributed for penetrating keratoplasty in the United States during the surveillance decade. One eye bank each in the northeastern, southeastern, north central, south central, and western regions of the United States was randomly assigned case-surgery dates, identified controls by selecting the first 2 donor corneas distributed on or after these days, and electronically transferred data collated from retained records. Missing, illegible, illogical, and inconsistent responses for cases and controls were corrected by communication with the reporting eye bank. The interval between death and surgery was recorded for each control and was calculated for cases as the combined death-to-preservation and preservation-to-surgery intervals rounded to the next day. The total number of donor corneas distributed for transplant by US eye banks was obtained from the Eye Bank Association of America statistical report.21

Microorganisms recovered from corneal graft recipients diagnosed with endophthalmitis were compared with isolates from corresponding donor rims. The prevalence of concordant recipient and donor isolates was compared between bacterial and fungal endophthalmitis with a χ2test. Contingency tables and mean values of donor characteristics were initially examined among cases and controls using Fisher exact test for categorical variables and a 2-sided ttest for continuous data. Conditional logistic regression estimated ORs with 95% confidence intervals (CIs) for exposure variables using Intercooled Stata version 9 statistical software (Stata Corp, College Station, Texas). Categorization of continuous variables was guided by their distribution among controls and by linear trends of unadjusted ORs across quartiles compared with the referent category, with break points determined by the strength of association and clinical relevance. Multiplicative effect modification was tested in hierarchical models if Wald P < .15. Regression models were compared with the likelihood ratio test to achieve a parsimonious model that was examined with influence diagnostics.22Subgroup analyses were performed after restricting cases to culture-positive corneal graft recipients, culture-positive recipients having the same microorganism recovered from the residual donor rim, culture-positive recipients with bacterial endophthalmitis, culture-positive recipients with fungal endophthalmitis, and recipients having endophthalmitis considered potentially attributable to donor corneal tissue. All of the statistical tests were 2-sided.

Eye banks distributed 340 174 donor corneas for surgery in the United States and 109 009 internationally during the 10-year study period.21The adverse reaction surveillance registry received 162 reports of endophthalmitis that followed penetrating keratoplasty with donor corneas distributed in Optisol-GS from 49 US eye banks in 29 states of the northeastern (21 reports), southeastern (49 reports), north central (41 reports), south central (24 reports), and western (27 reports) United States. The median duration between transplant and diagnosis of endophthalmitis was 7 days (25% and 75% quartiles, 3 and 32 days, respectively).

Among 146 recipient eyes that had intraocular fluid submitted for microbiological assessment, 18 yielded enterococci, 16 pneumococci, 26 other streptococci, 12 staphylococci or unspeciated gram-positive cocci, 3 clostridia, 7 gram-negative rods, 38 yeasts, and 1 filamentous fungus (Table 1). Of 121 cases of endophthalmitis that had both donor and recipient cultures done, 59 (48.8%) had concordant microbial isolates, including 28 of 81 (34.6%) with bacterial endophthalmitis and 31 of 40 (77.5%) with fungal endophthalmitis (P < .001). Endophthalmitis occurred after transplant of the contralateral cornea from the same donor among 24 cases, including 6 mated pairs that yielded similar microbial isolates from both recipient eyes (4 mated pairs with Candidaspecies, 1 pair with Clostridium perfringens, and 1 pair with Streptococcus agalactiae). Four cases with donor mate infection did not submit a separate form for the paired tissue recipient. No tissue mate among the controls was reported with endophthalmitis, although 3 mated transplants had primary graft failure. The contralateral cornea was not distributed for 12 cases and 15 controls.

Table Graphic Jump LocationTable 1. Microbial Recovery From 162 Cases of Postkeratoplasty Endophthalmitis

Table 2compares donor and recipient characteristics of 162 cases of endophthalmitis and 324 matched controls. The donor corneas of 7 cases and 6 controls were imported from another US eye bank. The mean (SD) donor age was 53 (17) years for cases and 53 (17) years for controls. The mean (SD) recipient age was 69 (19) years for cases and 64 (21) years for controls. In a final multivariable model in which effect modification was not found (Table 3), the odds of endophthalmitis rose by 17% (95% CI, 6%-30%) for every 10 years of recipient age (P = .003).

Table Graphic Jump LocationTable 2. Characteristics of Cases With Postkeratoplasty Endophthalmitis and Surgery Date–Matched Controls
Table Graphic Jump LocationTable 3. Risk Factors for Endophthalmitis After Penetrating Keratoplasty

The odds of hospital retrieval among reported cases of postkeratoplasty endophthalmitis were 2.84 (95% CI, 1.61-4.98) times that of other donation sites (P < .001). In comparison with other causes of death, cancer occurred significantly more often among cases (OR, 2.46; 95% CI, 1.53-3.97; P < .001). Malignant neoplasms among 53 cases and 54 controls with cancer-related deaths were breast (7 and 6, respectively), gastrointestinal (10 and 7, respectively), genitourinary (11 and 7, respectively), head and neck (6 and 7, respectively), pulmonary (12 and 19, respectively), skin or bone (2 and 3, respectively), and not reported (5 and 5, respectively). A donation-to-surgery duration exceeding 5 days occurred more often among cases than controls (OR, 1.55; 95% CI, 1.02-2.35; P = .04). Restricting the case group to 121 eyes with culture-confirmed endophthalmitis or to 59 culture-confirmed recipient infections having the same microorganism recovered from the donor corneal rim produced comparable results (Table 3). Similar ORs were also found for bacterial and fungal endophthalmitis subgroups and after excluding 56 endophthalmitis cases judged by medical directors to be probably not due to donor eye tissue, including 5 with concordant microbial isolation (data not shown).

Transplant agencies and surgeons take several precautions to safeguard against contamination and infection.23Some strategies such as culturing donor eyes after cold storage have an uncertain preventive role.15We observed that recipient culture results correlated with donor rim isolates for a third of reported bacterial endophthalmitis and among three-fourths of fungal endophthalmitis. Better detection and control of contaminants, especially fungi, may improve the safety of eye banking.

A related opportunity for preventing donor-to-host transmission is to preclude potential donors who have an infectious disease risk.24Decedents with untreated septicemia are proactively deferred, but the importance of other medical conditions is less clear.25Although a previous study26found that decedent illness was not associated with microbial recovery from residual donor tissue, a small series27suggested a possible link between postkeratoplasty endophthalmitis and donor malignancy. Like sepsis, other donor conditions may affect the incidence of microbial colonization or contamination of the ocular surface and cornea.7,9,16,17

This study examined the medical status of corneal donors before donation. We found that hospitalization or malignant neoplasm at the time of death more than doubled the odds of infection after keratoplasty. The causal pathway is unclear, but a chain of contamination is biologically tenable. Inpatients and patients with cancer are exposed to nosocomial pathogens such as enterococci and yeasts and may harbor microorganisms in the bloodstream and tissues.9,17,28As this study implicates an infectious risk with corneas from donors dying in the hospital or with cancer, ensuring vigilance during medical record review to identify signs of active infection could potentially enhance the safety of corneal transplant.

Another prospect for prevention that is amenable to action and further research is to optimize tissue allocation activities. Refrigerated corneal preservation does not necessarily foster microbial persistence,17,26,29but prolonging storage beyond 5 days has been associated with increased bacterial recovery.18Eye tissues obtained and distributed within 5 days of donation appear less likely to be associated with postsurgical infection in this study. Eye banks should continue endeavors to place tissue for transplant expeditiously.30

The findings of this study are plausible, reasonably precise, consistent across subgroups, and likely to be representative of corneal transplants in the United States. We tried to ensure trustworthy results by considering possible challenges to validity in this case-control study. Sampling bias was minimized by choosing controls from geographically diverse eye banks and by matching on surgery dates of cases to incorporate regional and temporal trends. Selective registration of endophthalmitis cases, however, could have misrepresented the incidence and spectrum of infection after transplant. Despite requested notification from corneal surgeons and requisite reporting by eye banks, postkeratoplasty endophthalmitis was reported less frequently than in a systematic literature review.3

Another limitation may have occurred because information was accrued contemporaneously for cases but extracted retrospectively for controls. Donor records of infected cases could have been more closely scrutinized than successful transplants, but record review bias seems unlikely because the prevalence of cancer among controls equaled that among all corneal donors in the United States during the same time span21and was similar to the proportion in a prospective cohort.31We also doubt that computation bias affected results even though the death-to-surgery duration was recorded by control banks but was calculated for cases from cadaveric and storage intervals.

Eye banks and surgeons cope with potential sources of infectious agents other than the donor,3234and additional factors could have confounded the analysis. Adjunctive lens and vitreous procedures increase the risk of postkeratoplasty infection,35and ocular surface flora can enter the eye during or after surgery.36,37While our study was largely focused on donor characteristics and eye-banking practices, we corroborated that older patients have an increased risk of endophthalmitis after anterior segment surgery.38,39

A national surveillance registry offers a unique resource to undertake etiologic investigations on the safety of eye banking and the outcomes of corneal transplant. Our results provide evidence that premortem conditions may affect donor eye tissue but do not warrant excluding broad categories of otherwise eligible donors.40,41Blanket deferral from donation by hospitalized patients or those with cancer would be unreasonable as most corneas from these donors do not result in complications. Rather, efforts are needed to determine what illnesses, interventions, or other reasons might explain the pathway linking certain donors with recipient infection. We advocate judicious evaluation of decedents and encourage efficient recovery and delivery of donated tissues, but we also recognize an opportunity for better methods of microbiological assessment and control to reduce infections associated with corneal transplant.

Correspondence:Kirk R. Wilhelmus, MD, PhD, Sid W. Richardson Ocular Microbiology Laboratory, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, 6565 Fannin St, NC-205, Houston, TX 77030 (kirkw@bcm.tmc.edu).

Submitted for Publication:December 19, 2006; final revision received February 2, 2007; accepted February 20, 2007.

Members of the Medical Review Subcommittee of the Medical Advisory Board for the Eye Bank Association of America:Patricia Dahl, CEBT; Chris Hanna, CEBT; Ben Jenkins, CEBT; Marian S. Macsai, MD (co-chair); Michael L. Nordlund, MD, PhD; Kevin Ross, MS, MPH; Bradley Tennant, CEBT (co-chair).

Financial Disclosure:None reported.

Funding/Support:This study was supported under a Ruth L. Kirschstein National Research Service Award (EY016631) from the National Eye Institute, National Institutes of Health, Bethesda, Maryland, and by unrestricted grants from the Eye Bank Association of America, Washington, DC, Research to Prevent Blindness, Inc, New York, New York, and the Sid W. Richardson Foundation, Fort Worth, Texas.

Additional Contributions:Tara Fischer, Donor Network of Arizona, and Trisha Watkins, CEBT, Georgia Eye Bank, Inc, collected data from control eye banks; Kim Harano, Baylor College of Medicine, maintained the surveillance database; and Rusty Kelly, CAE, Eye Bank Association of America, administered the electronic report system.

Aaberg  TM  JrFlynn  HW  JrSchiffman  JNewton  J Nosocomial acute-onset postoperative endophthalmitis survey: a 10-year review of incidence and outcomes. Ophthalmology 1998;105 (6) 1004- 1010
PubMed Link to Article
Wu  PCKuo  HKLi  M  et al.  Nosocomial postoperative endophthalmitis: a 14-year review. Graefes Arch Clin Exp Ophthalmol 2006;244 (8) 920- 929
PubMed Link to Article
Taban  MBehrens  ANewcomb  RLNobe  MYMcDonnell  PJ Incidence of acute endophthalmitis following penetrating keratoplasty: a systematic review. Arch Ophthalmol 2005;123 (5) 605- 609
PubMed Link to Article
Kloess  PMStulting  RDWaring  GO  IIIWilson  LA Bacterial and fungal endophthalmitis after penetrating keratoplasty. Am J Ophthalmol 1993;115 (3) 309- 316
PubMed
Chu  W The past twenty-five years in eye banking. Cornea 2000;19 (5) 754- 765
PubMed Link to Article
Eastlund  T Bacterial infection transmitted by human tissue allograft transplantation. Cell Tissue Bank 2006;7 (3) 147- 166
PubMed Link to Article
Chittum  MEGrutzmacher  RDOiland  DMKalina  RE Contamination of corneal tissue from infected donors. Arch Ophthalmol 1985;103 (6) 802- 804
PubMed Link to Article
Armitage  WJEasty  DL Factors influencing the suitability of organ-cultured corneas for transplantation. Invest Ophthalmol Vis Sci 1997;38 (1) 16- 24
PubMed
Robert  PYCamezind  PDrouet  MPloy  MCAdenis  JP Internal and external contamination of donor corneas before in situ excision: bacterial risk factors in 93 donors. Graefes Arch Clin Exp Ophthalmol 2002;240 (4) 265- 270
PubMed Link to Article
Pels  EVrensen  GF Microbial decontamination of human donor eyes with povidone-iodine: penetration, toxicity, and effectiveness. Br J Ophthalmol 1999;83 (9) 1019- 1026
PubMed Link to Article
Builles  NPerraud  MReverdy  ME  et al.  Reducing contamination when removing and storing corneas: a multidisciplinary, transversal, and environmental approach. Cornea 2006;25 (2) 185- 192
PubMed Link to Article
Chu  YIPenland  RLWilhelmus  KR Colorimetric indicators of microbial contamination in corneal preservation medium. Cornea 2000;19 (4) 517- 520
PubMed Link to Article
Kapur  RTu  EYPendland  SLFiscella  RSugar  J The effect of temperature on the antimicrobial activity of Optisol-GS. Cornea 2006;25 (3) 319- 324
PubMed Link to Article
Zanetti  EBruni  AMucignat  GCamposampiero  DFrigo  ACPonzin  D Bacterial contamination of human organ-cultured corneas. Cornea 2005;24 (5) 603- 607
PubMed Link to Article
Wilhelmus  KRHassan  SS The prognostic role of donor corneoscleral rim cultures in corneal transplantation. Ophthalmology 2007;114 (3) 440- 445
PubMed Link to Article
Ritter  EGotze  JTrute  KStrache  SSchmidt  GGliem  H Beitrag zum Umfang bakterieller Kontaminationen bei Keratoplastik-Spenderaugen post mortem. Klin Monatsbl Augenheilkd 1990;196 (2) 70- 75
PubMed Link to Article
Rehany  UBalut  GLefler  ERumelt  S The prevalence and risk factors for donor corneal button contamination and its association with ocular infection after transplantation. Cornea 2004;23 (7) 649- 654
PubMed Link to Article
Antonios  SRCameron  JABadr  IAHabash  NRCotter  JB Contamination of donor cornea: postpenetrating keratoplasty endophthalmitis. Cornea 1991;10 (3) 217- 220
PubMed Link to Article
Wilhelmus  KRStulting  RDSugar  JKhan  MM Primary corneal graft failure: a national reporting system. Arch Ophthalmol 1995;113 (12) 1497- 1502
PubMed Link to Article
Dupont  WD Power calculations for matched case-control studies. Biometrics 1988;44 (4) 1157- 1168
PubMed Link to Article
Eye Bank Association of America, Eye Banking Statistical Report.  Washington, DC Eye Bank Association of America2003;
Hosmer  DWLemeshow  S Applied Logistic Regression.  New York, NY John Wiley & Sons2000;248- 252
Hagenah  MWinter  R Dekontamination menschlicher Spenderhornhaute wahrend der Praparation und Konservierung. Klin Monatsbl Augenheilkd 1996;209 (1) 1- 6
PubMed Link to Article
Eastlund  T Infectious disease transmission through cell, tissue, and organ transplantation: reducing the risk through donor selection. Cell Transplant 1995;4 (5) 455- 477
PubMed Link to Article
Levartovsky  SLazarovich  A Devastating endophthalmitis caused by Serratia marcescens in two recipients after transplantation of corneal grafts from the same donor. Cell Tissue Bank 2002;3 (1) 45- 47
PubMed Link to Article
Gomes  JAPDana  MRDua  HSGoren  MBLaibson  PRCohen  EJ Positive donor rim culture in penetrating keratoplasty. Cornea 1995;14 (5) 457- 462
PubMed Link to Article
Keyhani  KSeedor  JAShah  MKTerraciano  AJRitterband  DC The incidence of fungal keratitis and endophthalmitis following penetrating keratoplasty. Cornea 2005;24 (3) 288- 291
PubMed Link to Article
Kuderer  NMDale  DCCrawford  JCosler  LELyman  GH Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 2006;106 (10) 2258- 2266
PubMed Link to Article
Wiffen  SJWeston  BCMaguire  LJBourne  WM The value of routine donor corneal rim cultures in penetrating keratoplasty. Arch Ophthalmol 1997;115 (6) 719- 724
PubMed Link to Article
Hassan  SSWilhelmus  KR Eye-banking risk factors for fungal endophthalmitis compared with bacterial endophthalmitis after corneal transplantation. Am J Ophthalmol 2005;139 (4) 685- 690
PubMed Link to Article
Sugar  AGal  RLBeck  W  et al. Cornea Donor Study Group, Baseline donor characteristics in the Cornea Donor Study. Cornea 2005;24 (4) 389- 396
PubMed Link to Article
Sieck  EAEnzenauer  RWCornell  FMButler  C Contamination of K-Sol corneal storage medium with Propionibacterium acnes. Arch Ophthalmol 1989;107 (7) 1023- 1024
PubMed Link to Article
Moore  PJLinnemann  CC  JrSanitato  JJBinnion  B Pneumococcal endophthalmitis after corneal transplantation: control by modification of harvesting techniques. Infect Control Hosp Epidemiol 1989;10 (3) 102- 105
PubMed Link to Article
Cameron  JABadr  IAMiguel Risco  JAbboud  EGonnah  el-S Endophthalmitis cluster from contaminated donor corneas following penetrating keratoplasty. Can J Ophthalmol 1998;33 (1) 8- 13
PubMed
Aiello  LPJavitt  JCCanner  JK National outcomes of penetrating keratoplasty: risks of endophthalmitis and retinal detachment. Arch Ophthalmol 1993;111 (4) 509- 513
PubMed Link to Article
Speaker  MGMilch  FAShah  MKEisner  WKreiswirth  BN Role of external bacterial flora in the pathogenesis of acute postoperative endophthalmitis. Ophthalmology 1991;98 (5) 639- 649
PubMed Link to Article
Frangie  JPPark  SBMartin  AAquavella  JV Efficacy of routine topical postoperative antibiotics in the management of penetrating keratoplasty. Ann Ophthalmol 1994;26159- 165
Li  JMorlet  NNg  JQSemmens  JBKnuiman  MWTeam EPSWA, Significant nonsurgical risk factors for endophthalmitis after cataract surgery: EPSWA fourth report. Invest Ophthalmol Vis Sci 2004;45 (5) 1321- 1328
PubMed Link to Article
West  ESBehrens  AMcDonnell  PJTielsch  JMSchein  OD The incidence of endophthalmitis after cataract surgery among the US Medicare population increased between 1994 and 2001. Ophthalmology 2005;112 (8) 1388- 1394
PubMed Link to Article
Seedor  JAStulting  RDEpstein  RJ  et al.  Survival of corneal grafts from donors supported by mechanical ventilation. Ophthalmology 1987;94 (2) 101- 108
PubMed Link to Article
Spelsberg  HReinhard  TSengler  UDaeubener  WSundmacher  R Organ-cultured corneal grafts from septic donors: a retrospective study. Eye 2002;16 (5) 622- 627
PubMed Link to Article

Figures

Tables

Table Graphic Jump LocationTable 1. Microbial Recovery From 162 Cases of Postkeratoplasty Endophthalmitis
Table Graphic Jump LocationTable 2. Characteristics of Cases With Postkeratoplasty Endophthalmitis and Surgery Date–Matched Controls
Table Graphic Jump LocationTable 3. Risk Factors for Endophthalmitis After Penetrating Keratoplasty

References

Aaberg  TM  JrFlynn  HW  JrSchiffman  JNewton  J Nosocomial acute-onset postoperative endophthalmitis survey: a 10-year review of incidence and outcomes. Ophthalmology 1998;105 (6) 1004- 1010
PubMed Link to Article
Wu  PCKuo  HKLi  M  et al.  Nosocomial postoperative endophthalmitis: a 14-year review. Graefes Arch Clin Exp Ophthalmol 2006;244 (8) 920- 929
PubMed Link to Article
Taban  MBehrens  ANewcomb  RLNobe  MYMcDonnell  PJ Incidence of acute endophthalmitis following penetrating keratoplasty: a systematic review. Arch Ophthalmol 2005;123 (5) 605- 609
PubMed Link to Article
Kloess  PMStulting  RDWaring  GO  IIIWilson  LA Bacterial and fungal endophthalmitis after penetrating keratoplasty. Am J Ophthalmol 1993;115 (3) 309- 316
PubMed
Chu  W The past twenty-five years in eye banking. Cornea 2000;19 (5) 754- 765
PubMed Link to Article
Eastlund  T Bacterial infection transmitted by human tissue allograft transplantation. Cell Tissue Bank 2006;7 (3) 147- 166
PubMed Link to Article
Chittum  MEGrutzmacher  RDOiland  DMKalina  RE Contamination of corneal tissue from infected donors. Arch Ophthalmol 1985;103 (6) 802- 804
PubMed Link to Article
Armitage  WJEasty  DL Factors influencing the suitability of organ-cultured corneas for transplantation. Invest Ophthalmol Vis Sci 1997;38 (1) 16- 24
PubMed
Robert  PYCamezind  PDrouet  MPloy  MCAdenis  JP Internal and external contamination of donor corneas before in situ excision: bacterial risk factors in 93 donors. Graefes Arch Clin Exp Ophthalmol 2002;240 (4) 265- 270
PubMed Link to Article
Pels  EVrensen  GF Microbial decontamination of human donor eyes with povidone-iodine: penetration, toxicity, and effectiveness. Br J Ophthalmol 1999;83 (9) 1019- 1026
PubMed Link to Article
Builles  NPerraud  MReverdy  ME  et al.  Reducing contamination when removing and storing corneas: a multidisciplinary, transversal, and environmental approach. Cornea 2006;25 (2) 185- 192
PubMed Link to Article
Chu  YIPenland  RLWilhelmus  KR Colorimetric indicators of microbial contamination in corneal preservation medium. Cornea 2000;19 (4) 517- 520
PubMed Link to Article
Kapur  RTu  EYPendland  SLFiscella  RSugar  J The effect of temperature on the antimicrobial activity of Optisol-GS. Cornea 2006;25 (3) 319- 324
PubMed Link to Article
Zanetti  EBruni  AMucignat  GCamposampiero  DFrigo  ACPonzin  D Bacterial contamination of human organ-cultured corneas. Cornea 2005;24 (5) 603- 607
PubMed Link to Article
Wilhelmus  KRHassan  SS The prognostic role of donor corneoscleral rim cultures in corneal transplantation. Ophthalmology 2007;114 (3) 440- 445
PubMed Link to Article
Ritter  EGotze  JTrute  KStrache  SSchmidt  GGliem  H Beitrag zum Umfang bakterieller Kontaminationen bei Keratoplastik-Spenderaugen post mortem. Klin Monatsbl Augenheilkd 1990;196 (2) 70- 75
PubMed Link to Article
Rehany  UBalut  GLefler  ERumelt  S The prevalence and risk factors for donor corneal button contamination and its association with ocular infection after transplantation. Cornea 2004;23 (7) 649- 654
PubMed Link to Article
Antonios  SRCameron  JABadr  IAHabash  NRCotter  JB Contamination of donor cornea: postpenetrating keratoplasty endophthalmitis. Cornea 1991;10 (3) 217- 220
PubMed Link to Article
Wilhelmus  KRStulting  RDSugar  JKhan  MM Primary corneal graft failure: a national reporting system. Arch Ophthalmol 1995;113 (12) 1497- 1502
PubMed Link to Article
Dupont  WD Power calculations for matched case-control studies. Biometrics 1988;44 (4) 1157- 1168
PubMed Link to Article
Eye Bank Association of America, Eye Banking Statistical Report.  Washington, DC Eye Bank Association of America2003;
Hosmer  DWLemeshow  S Applied Logistic Regression.  New York, NY John Wiley & Sons2000;248- 252
Hagenah  MWinter  R Dekontamination menschlicher Spenderhornhaute wahrend der Praparation und Konservierung. Klin Monatsbl Augenheilkd 1996;209 (1) 1- 6
PubMed Link to Article
Eastlund  T Infectious disease transmission through cell, tissue, and organ transplantation: reducing the risk through donor selection. Cell Transplant 1995;4 (5) 455- 477
PubMed Link to Article
Levartovsky  SLazarovich  A Devastating endophthalmitis caused by Serratia marcescens in two recipients after transplantation of corneal grafts from the same donor. Cell Tissue Bank 2002;3 (1) 45- 47
PubMed Link to Article
Gomes  JAPDana  MRDua  HSGoren  MBLaibson  PRCohen  EJ Positive donor rim culture in penetrating keratoplasty. Cornea 1995;14 (5) 457- 462
PubMed Link to Article
Keyhani  KSeedor  JAShah  MKTerraciano  AJRitterband  DC The incidence of fungal keratitis and endophthalmitis following penetrating keratoplasty. Cornea 2005;24 (3) 288- 291
PubMed Link to Article
Kuderer  NMDale  DCCrawford  JCosler  LELyman  GH Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 2006;106 (10) 2258- 2266
PubMed Link to Article
Wiffen  SJWeston  BCMaguire  LJBourne  WM The value of routine donor corneal rim cultures in penetrating keratoplasty. Arch Ophthalmol 1997;115 (6) 719- 724
PubMed Link to Article
Hassan  SSWilhelmus  KR Eye-banking risk factors for fungal endophthalmitis compared with bacterial endophthalmitis after corneal transplantation. Am J Ophthalmol 2005;139 (4) 685- 690
PubMed Link to Article
Sugar  AGal  RLBeck  W  et al. Cornea Donor Study Group, Baseline donor characteristics in the Cornea Donor Study. Cornea 2005;24 (4) 389- 396
PubMed Link to Article
Sieck  EAEnzenauer  RWCornell  FMButler  C Contamination of K-Sol corneal storage medium with Propionibacterium acnes. Arch Ophthalmol 1989;107 (7) 1023- 1024
PubMed Link to Article
Moore  PJLinnemann  CC  JrSanitato  JJBinnion  B Pneumococcal endophthalmitis after corneal transplantation: control by modification of harvesting techniques. Infect Control Hosp Epidemiol 1989;10 (3) 102- 105
PubMed Link to Article
Cameron  JABadr  IAMiguel Risco  JAbboud  EGonnah  el-S Endophthalmitis cluster from contaminated donor corneas following penetrating keratoplasty. Can J Ophthalmol 1998;33 (1) 8- 13
PubMed
Aiello  LPJavitt  JCCanner  JK National outcomes of penetrating keratoplasty: risks of endophthalmitis and retinal detachment. Arch Ophthalmol 1993;111 (4) 509- 513
PubMed Link to Article
Speaker  MGMilch  FAShah  MKEisner  WKreiswirth  BN Role of external bacterial flora in the pathogenesis of acute postoperative endophthalmitis. Ophthalmology 1991;98 (5) 639- 649
PubMed Link to Article
Frangie  JPPark  SBMartin  AAquavella  JV Efficacy of routine topical postoperative antibiotics in the management of penetrating keratoplasty. Ann Ophthalmol 1994;26159- 165
Li  JMorlet  NNg  JQSemmens  JBKnuiman  MWTeam EPSWA, Significant nonsurgical risk factors for endophthalmitis after cataract surgery: EPSWA fourth report. Invest Ophthalmol Vis Sci 2004;45 (5) 1321- 1328
PubMed Link to Article
West  ESBehrens  AMcDonnell  PJTielsch  JMSchein  OD The incidence of endophthalmitis after cataract surgery among the US Medicare population increased between 1994 and 2001. Ophthalmology 2005;112 (8) 1388- 1394
PubMed Link to Article
Seedor  JAStulting  RDEpstein  RJ  et al.  Survival of corneal grafts from donors supported by mechanical ventilation. Ophthalmology 1987;94 (2) 101- 108
PubMed Link to Article
Spelsberg  HReinhard  TSengler  UDaeubener  WSundmacher  R Organ-cultured corneal grafts from septic donors: a retrospective study. Eye 2002;16 (5) 622- 627
PubMed Link to Article

Correspondence

CME
Also Meets CME requirements for:
Browse CME for all U.S. States
Accreditation Information
The American Medical Association is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The AMA designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 CreditTM per course. Physicians should claim only the credit commensurate with the extent of their participation in the activity. Physicians who complete the CME course and score at least 80% correct on the quiz are eligible for AMA PRA Category 1 CreditTM.
Note: You must get at least of the answers correct to pass this quiz.
Please click the checkbox indicating that you have read the full article in order to submit your answers.
Your answers have been saved for later.
You have not filled in all the answers to complete this quiz
The following questions were not answered:
Sorry, you have unsuccessfully completed this CME quiz with a score of
The following questions were not answered correctly:
Commitment to Change (optional):
Indicate what change(s) you will implement in your practice, if any, based on this CME course.
Your quiz results:
The filled radio buttons indicate your responses. The preferred responses are highlighted
For CME Course: A Proposed Model for Initial Assessment and Management of Acute Heart Failure Syndromes
Indicate what changes(s) you will implement in your practice, if any, based on this CME course.
Submit a Comment

Multimedia

Some tools below are only available to our subscribers or users with an online account.

Web of Science® Times Cited: 27

Related Content

Customize your page view by dragging & repositioning the boxes below.

See Also...
Articles Related By Topic
Related Collections