Utility of Large Spot Binocular Indirect Laser Delivery for Peripheral Photocoagulation Therapy in Children

Saranya C. Balasubramaniam, BA; Brian G. Mohney, MD; Genie M. Bang, MD; Thomas P. Link, BA; Jose S. Pulido, MD, MS, MPH, MBA

The purpose of this article is to demonstrate the utility of the large spot size (LSS) setting using a binocular laser indirect delivery system for peripheral ablation in children. One patient with bilateral retinopathy of prematurity received photocoagulation with standard spot size burns placed adjacently to LSS burns. Using a pixel analysis program called Image J on the Retcam picture, the areas of each retinal spot size were determined in units of pixels, giving a standard spot range of 805 to 1294 pixels and LSS range of 1699 to 2311 pixels. Additionally, fluence was calculated using theoretical retinal areas produced by each spot size: the standard spot setting was 462 mJ/mm² and the LSS setting was 104 mJ/mm². For eyes with retinopathy of prematurity, our study shows that LSS laser indirect delivery halves the number of spots required for treatment and reduces fluence by almost one-quarter, producing more uniform spots.

Arch Ophthalmol. 2012;130(9):1213-1217
The use of LSS laser photocoagulation therapy using LIO is not well documented in the literature. Recently, Shah and colleagues compared the use of continuous-mode LSS diode therapy with standard spot size conventional pulsed-mode diode therapy for patients with ROP. They found that LSS photocoagulation was 40% more time efficient than conventional laser spot size. They also found that there was no difference in complication rates or outcomes when using LSS. However, this study used continuous-mode LSS therapy and was limited to patients with ROP.

One of us (J.S.P.) has used LSS laser photocoagulation of the peripheral retina since 2010. We now present the use of LSS peripheral laser photocoagulation on 7 eyes of pediatric patients with a broad spectrum of diseases including Coats disease, pars planitis, ROP, and vasculitis with peripheral neovascularization. The goal of this article is to show the magnitude of increase in retinal spot area as well as the increased uniformity achieved when using LSS for peripheral laser photocoagulation. We also report 7 eyes for which standard spot sized peripheral ablation was used to show the reduction in the number of laser spots necessary to treat when using LSS LIO as compared with the small spot size setting.

METHODS

All patients were evaluated and treated in the Department of Ophthalmology at the Mayo Clinic, Rochester, Minnesota. Institutional review board approval for retrospective review was obtained as study number 11-006584. Visual acuity was determined using the Snellen eye chart in a formal examination with patients old enough to participate. As described in Table 1, patients 1 through 4 were treated with LSS peripheral photocoagulation. Patient 1 was treated for unilateral Coats disease; patient 2, for bilateral vasculitis with peripheral neovascularization; and patient 3, for bilateral pars planitis. Patient 4 is a baby with bilateral prethreshold ROP for whom we used LSS in conjunction with the standard spot size to photographically document the relative size difference between the 2 spot sizes. For this patient, photograph documentation was performed by the Retcam (Clarity Medical Systems Inc) and can be seen in Figure 1.

For the 7 eyes treated from patients 1 through 4, peripheral photocoagulation was delivered using the LSS LIO (Iridex Corp) and an infrared diode laser of 810 nm (Oculight Slx; Iridex Corp) and either a 20-diopter (D) or 30-D lens (Volk Optical Inc). Laser therapy was delivered with continued observation through the lens while patients were under anesthesia and the LSS was aimed through a dilated pupil. The power and duration were adjusted to achieve white spot photocoagulation. For patients 5 through 8, similar methods and materials were used to treat different diseases.

Table 1. Data of Eyes Treated With Large Spot Size Laser Diode Photocoagulation

<table>
<thead>
<tr>
<th>Patient No./Sex/Age</th>
<th>Eye</th>
<th>Diagnosis</th>
<th>Examination Findings</th>
<th>Initial VA</th>
<th>Lens</th>
<th>Power/Duration</th>
<th>No. of Spots</th>
<th>Follow-up</th>
<th>Final VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/M/17 y</td>
<td>OS</td>
<td>Coats disease</td>
<td>Subretinal scar, hard exudates, and telangiectasia in periphery</td>
<td>20/200</td>
<td>20 D</td>
<td>NR, diode</td>
<td>226</td>
<td>Return in 8 mo</td>
<td>20/400</td>
</tr>
<tr>
<td>2/M/7 y</td>
<td>OD</td>
<td>Vasculitis with peripheral neovascularization</td>
<td>With vitreous hemorrhage</td>
<td>20/25-2</td>
<td>30 D</td>
<td>1070-1200 mW/1000 ms</td>
<td>450</td>
<td>20/30-2</td>
<td></td>
</tr>
<tr>
<td>3/M/11 y</td>
<td>OD</td>
<td>Pars planitis</td>
<td>Inferior snowbank</td>
<td>20/150 + 2</td>
<td>30 D</td>
<td>900-1000 mW/9 s</td>
<td>91</td>
<td>20/40 + 1</td>
<td></td>
</tr>
<tr>
<td>4/F/65 d</td>
<td>OD</td>
<td>ROP</td>
<td>Zone 2, stage 2/3 with plus disease in both eyes</td>
<td>30 D, 1400 µm</td>
<td>30 D</td>
<td>900-1000 mW/1000 ms</td>
<td>78</td>
<td>20/40-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OS</td>
<td>ROP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: D, diopter; NR, not reported; ROP, retinopathy of prematurity; VA, visual acuity.

Figure 1. Retcam (Clarity Medical Systems) photograph of adjacent spot size treatment delivered to patient 4. Large spot size photocoagulation spots (left) appear to be more uniform in shape and size than those delivered with the standard spot size setting (right).
were used, except standard spot size setting photocoagulation was used (Table 2). Additionally, for patient 8, alternating therapy with the 20-D and the 30-D lens was used.

When using LIO to deliver laser therapy, the 2 ways that treatment can be modified to produce the largest retinal spot size possible are by increasing the power of the condensing lens and using the larger spot size setting. A third, and less precise, way of increasing spot size is to defocus toward the patient. This can be inferred from the fact that the calculation of the true size of a spot on the fundus depends on the refraction, corneal curvature, axial length, and magnification of the imaging system.

The Iridex LIO system can deliver 2 spot sizes with a 20-D lens: the small spot size is 350 µm and the LSS is 1400 µm. When using a 30-D lens, the retinal spot size will increase by three-halves, or $\frac{3}{2}$, given the following relationship:

$$A_{\text{Large Spot}} = \pi \cdot \left(\frac{d_{\text{Large Spot}}}{2}\right)^2 = \pi \cdot \left(\frac{350}{2}\right)^2 = \pi \cdot 122500 \approx 1102500$$

$$A_{\text{Small Spot}} = \pi \cdot \left(\frac{d_{\text{Small Spot}}}{2}\right)^2 = \pi \cdot \left(\frac{1400}{2}\right)^2 = \pi \cdot 1960000 \approx 626500$$

Thus, assuming emmetropia and the average refractive power of the lens being 60 D, the 30-D condensing lens will produce a small spot size of 525 µm and LSS of 2100 µm.

The second way to increase the retinal spot size is by using the LSS setting, which we used in the 7 eyes of patients 1 through 4. To describe the potential efficacy of using the LSS setting, it is important to understand the differences in the area produced by each size setting. Mathematically, the theoretical area of the LSS as compared with the area of the small spot size is compared in the following equation. Assuming use of a 30-D lens with large spot diameter of 2100 µm and small spot diameter of 525 µm, the theoretical area of the spot delivered can be calculated:

$$A_{\text{LSS}} = \pi \cdot \left(\frac{d_{\text{LSS}}}{2}\right)^2 = \pi \cdot \left(\frac{2100}{2}\right)^2 = \pi \cdot 5250000 \approx 1608000$$

In the eye of patient 4, which had adjacent spots treated with the standard spot size and LSS spot size, quantification of the respective areas was carried out using Image J. The median area for standard spot was 1020.5. The resulting range in pixel area for standard spot size was 636 to 1135 pixels, as listed in Table 3.

To determine the actual difference in spot size, patient 8 (baby with ROP) was treated with the standard spot size LIO and adjacent LSS LIO, both performed with a 30-D lens (Figure 1). Treatment time was adjusted to obtain similar white spot photocoagulation. Using Image J (National Institutes of Health), each standard spot area was measured in units of pixels and compared to understand the objective difference in spot variability and area. Threshold settings were set to 164 with the watershed application. The areas were reported for 6 small spots (spot labels 2, 3, 4, 6, 7, and 14) as well as for 3 large spots (spot labels 10, 13, and 16) as summarized in Figure 2 and Table 3.

Thus, the theoretical area of the LSS spot size is 16 times bigger when using the LSS setting. The larger spot size setting. A third, and less precise, way of increasing spot size is to defocus toward the patient. This can be inferred from the fact that the calculation of the true size of a spot on the fundus depends on the refraction, corneal curvature, axial length, and magnification of the imaging system.

The Iridex LIO system can deliver 2 spot sizes with a 20-D lens: the small spot size is 350 µm and the LSS is 1400 µm. When using a 30-D lens, the retinal spot size will increase by three-halves, or $\frac{3}{2}$, given the following relationship:

$$A_{\text{Large Spot}} = \pi \cdot \left(\frac{d_{\text{Large Spot}}}{2}\right)^2 = \pi \cdot \left(\frac{350}{2}\right)^2 = \pi \cdot 122500 \approx 1102500$$

$$A_{\text{Small Spot}} = \pi \cdot \left(\frac{d_{\text{Small Spot}}}{2}\right)^2 = \pi \cdot \left(\frac{1400}{2}\right)^2 = \pi \cdot 1960000 \approx 626500$$

Thus, assuming emmetropia and the average refractive power of the lens being 60 D, the 30-D condensing lens will produce a small spot size of 525 µm and LSS of 2100 µm.

The second way to increase the retinal spot size is by using the LSS setting, which we used in the 7 eyes of patients 1 through 4. To describe the potential efficacy of using the LSS setting, it is important to understand the differences in the area produced by each size setting. Mathematically, the theoretical area of the LSS as compared with the area of the small spot size is compared in the following equation. Assuming use of a 30-D lens with large spot diameter of 2100 µm and small spot diameter of 525 µm, the theoretical area of the spot delivered can be calculated:

$$A_{\text{LSS}} = \pi \cdot \left(\frac{d_{\text{LSS}}}{2}\right)^2 = \pi \cdot \left(\frac{2100}{2}\right)^2 = \pi \cdot 5250000 \approx 1608000$$

In the eye of patient 4, which had adjacent spots treated with the standard spot size and LSS spot size, quantification of the respective areas was carried out using Image J. The median area for standard spot was 1020.5. The resulting range in pixel area for standard spot size was 636 to 1135 pixels, as listed in Table 3.

To determine the actual difference in spot size, patient 8 (baby with ROP) was treated with the standard spot size LIO and adjacent LSS LIO, both performed with a 30-D lens (Figure 1). Treatment time was adjusted to obtain similar white spot photocoagulation. Using Image J (National Institutes of Health), each standard spot area was measured in units of pixels and compared to understand the objective difference in spot variability and area. Threshold settings were set to 164 with the watershed application. The areas were reported for 6 small spots (spot labels 2, 3, 4, 6, 7, and 14) as well as for 3 large spots (spot labels 10, 13, and 16) as summarized in Figure 2 and Table 3.

Table 2. Eyes Treated With Standard Spot Size Laser Diode Photocoagulation

<table>
<thead>
<tr>
<th>Patient No./Sex/Age</th>
<th>Eye</th>
<th>Diagnosis</th>
<th>Indication</th>
<th>Initial VA</th>
<th>Lens</th>
<th>Power/Duration</th>
<th>No. of Spots</th>
<th>Follow-up</th>
<th>Final VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/F/87 d</td>
<td>OD</td>
<td>ROP</td>
<td>Zone 2, stage 2/3 with early plus disease in both eyes</td>
<td>30 D</td>
<td>400-500 mW/400-500 ms</td>
<td>713</td>
<td>30 mo, 5 d</td>
<td>Light response, optic hypoplasia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OS</td>
<td>ROP</td>
<td>Zone 1 or 2 with marked plus disease in both eyes</td>
<td>30 D</td>
<td>400-500 mW/400-500 ms</td>
<td>938</td>
<td></td>
<td>Light response</td>
<td></td>
</tr>
<tr>
<td>7/F/77 d</td>
<td>OD</td>
<td>ROP</td>
<td>Zone 1 or 2 with marked plus disease in both eyes</td>
<td>NR</td>
<td>600 mW/600 ms</td>
<td>1165</td>
<td>4 mo, 20 d</td>
<td>Resolving ROP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OS</td>
<td>ROP</td>
<td>Zone 2, stage 3 with plus disease in both eyes</td>
<td>Alternate 20/30</td>
<td>200-400 mW/300-400 ms</td>
<td>1050</td>
<td>40 mo, 7 d</td>
<td>20/60</td>
<td></td>
</tr>
<tr>
<td>8/M/73 d</td>
<td>OD</td>
<td>ROP</td>
<td>Zone 1 or 2 with marked plus disease in both eyes</td>
<td>30 D</td>
<td>260-540 mW/200-300 ms</td>
<td>1167</td>
<td></td>
<td>20/40 + 1</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: D, diopter; NR, not reported; ROP, retinopathy of prematurity; VA, visual acuity.

Figure 2. Image J (National Institutes of Health) analysis of Figure 1 can quantify the difference in pixel area of large spot size photocoagulation spots (1669-2311 pixels) and standard photocoagulation spots (805-1294 pixels), as listed in Table 3.
805 to 1294 pixels and range for LSS was 1669 to 2311 pixels (Figure 2 and Table 3).

The Retcam photograph (Figure 1) also depicts increased uniformity in the large spots delivered and the standard spots appear to have marked variability in size and shape. This may be attributed, at least in part, to the reduced fluence achieved by using the LSS LIO. Using the power and time settings from patient 4 who received adjacent standard spot and LSS LIO, fluence was calculated using the theoretical radii of the spot sizes when using the 30-D lens. For the standard spot size of 525 µm, calculations were made based on the diameter of 0.525 mm, making the radius equal to 0.2625 mm. For the LSS of 2100 µm, calculations were based on the diameter of 2.100 mm, making the radius 1.050 mm.

\[
\text{Fluence} = \frac{\text{Power} \times \text{Time}}{\text{Area}} = \frac{\text{mJ}}{\text{mm}^2}
\]

Fluence

Small Spot = \[
\frac{340 \text{ mW} \times 300 \text{ ms}}{0.216 \text{ mm}^2} = \frac{100 \text{ mJ}}{0.216 \text{ mm}^2} = 462 \text{ mJ/mm}^2
\]

Large Spot = \[
\frac{600 \text{ mW} \times 600 \text{ ms}}{3.46 \text{ mm}^2} = \frac{360 \text{ mJ}}{3.46 \text{ mm}^2} = 104 \text{ mJ/mm}^2
\]

Thus, the theoretical fluence for LSS is reduced by almost one-quarter when compared with the fluence of standard spot size use.

COMMENT

We report increased uniformity in spots delivered by LSS LIO, which may be attributed to the reduced fluence delivered to the retina allowing for more controlled delivery of photocoagulation therapy. We propose that the high fluence delivered to the retina by the standard spot size setting creates a variable effect that can lead to the marked variability observed in the shape and uniformity of the spots delivered. Additionally, the high fluence needed with the standard spot size accounts for the variability of adjacent spots that are "too hot" and break the Bruch membrane next to spots that are barely visible.

For ROP, where peripheral diode photocoagulation is the mainstay of treatment, our data show significant reductions in the number of spots that must be delivered to treat bilateral disease. Patient 4 from the LSS treatment group can be compared with patient 6 and patient 8 from the standard spot size treatment group. All 3 patients had a diagnosis of bilateral prethreshold ROP, categorized as zone 2, stage 2/3 with plus disease. For patient 4, who received treatment with the LSS setting, 820 spots were delivered to treat both eyes. This can be compared with treatment received with the standard spot size setting in patient 6, who required 1621 spots, and patient 8, who required 2217 spots to treat bilateral disease. Thus, standard spot size peripheral laser photocoagulation requires more time, as supported by Shah and colleagues. Thus, for children requiring broad areas of photocoagulation under anesthesia, the LSS setting can reduce time under anesthesia and time spent delivering treatment.

The limitations of this study are that it is retrospective with a small sample size. Additionally, a randomized controlled trial is needed in which time to achieve LSS ablation is compared with time spent administering small spot size ablation. There is a paucity of literature on the efficacy of using LSS in peripheral laser photocoagulation, but the safety and long-term outcomes are assumed to be equivalent to using the standard small spot size.

Standard spot size is ideal for focal areas of treatment; however, for large treatment areas, the LSS setting shows promise. This article demonstrates the magnitude of increase in retinal spot area achieved when using LSS for peripheral laser ablation. Given the theoretical increase in retinal area achieved with LSS combined with the 30-D condensing lens, we report a reduced number of spots required to deliver treatment, as well as the ability to deliver spots with increased uniformity and reduced fluence. We conclude that the LSS setting is an improved technique that should be more widely used when performing peripheral laser photocoagulation in pediatric patients and adults requiring LIO photocoagulation, such as elderly or cognitively impaired individuals.

REFERENCES

C ongratulations to the winner of our April quiz, Juan D. Arias, MD, Fundación Oftalmológica de Santander, Clínica FOSCAL, Bucaramanga, Colombia, and Ocular Oncology Service, Wills Eye Institute, Thomas Jefferson University, Philadelphia, Pennsylvania. The correct answer to our April challenge was foscarnet crystals. For a complete discussion of this case, see the Research Letters section in the May *Archives* (Martínez-Castillo S, Marín-Lambies C, Gallego-Pinazo R, Arévalo JF, Díaz-Llopis M. Crystallization after intravitreous foscarnet injections. *Arch Ophthalmol*. 2012;130[5]:658-659).

Be sure to visit the *Archives of Ophthalmology* website (http://www.archophthalmol.com) and try your hand at our Clinical Challenge Interactive Quiz. We invite visitors to make a diagnosis based on selected information from a case report or other feature scheduled to be published in the following month’s print edition of the *Archives*. The first visitor to e-mail our web editor with the correct answer will be recognized in the print journal and on our website and will receive a 1-year complimentary online subscription to *Archives of Ophthalmology*.