Phenotypic Characterization of 3 Families With Autosomal Dominant Retinitis Pigmentosa Due to Mutations in KLHL7

Yuquan Wen, PhD; Kirsten G. Locke, CRA; Martin Klein, MS; Sara J. Bowne, PhD; Lori S. Sullivan, PhD; Joseph W. Ray, MD; Stephen P. Daiger, PhD; David G. Birch, PhD; Dianna K. Hughbanks-Wheaton, PhD

Objective: To characterize the visual phenotype caused by mutations in the BTB-Kelch protein, KLHL7, responsible for the RP42 form of autosomal dominant retinitis pigmentosa (RP).

Methods: Comprehensive ophthalmic testing included visual acuity, static visual field, kinetic visual field, dark adaptometry, full-field electroretinography, spectral-domain optical coherence tomography, and fundus photography. Longitudinal visual function data (range, 15-27 years) were available for some of the affected individuals.

Results: We report a phenotypic assessment of 3 unrelated families, each harboring different KLHL7 mutations (c.458C>T, c.449G>A, and c.457G>A). The fundi showed classic signs of RP. Best-corrected visual acuity was 20/50 or better in at least one eye up to age 65 years. Static and kinetic visual fields showed concentric constriction to central 10° to 20° by age 65 years; 2 patients with Goldmann perimetry exhibited bilateral visual field retention in the far periphery. Both rod and cone full-field electroretinographic amplitudes were substantially lower than normal, with a decline rate of 3% per year in cone 31-Hz flicker response. Rod and cone activation and inactivation variables were abnormal. Spectral-domain optical coherence tomography indicated retention of foveal inner segment–outer segment junction through age 65 years.

Conclusions: Mutations in KLHL7 are associated with a late-onset form of autosomal dominant retinal degeneration that preferentially affects the rod photoreceptors. Full-field electroretinographic findings, including recovery kinetics, are consistent with those observed in other forms of autosomal dominant RP.

Clinical Relevance: The phenotypes are similar among patients with 3 types of KLHL7 mutations (c.458C>T, c.449G>A, and c.457G>A). Strong retention of foveal function and bilateral concentric constriction of visual fields with far periphery sparing may guide mutation screening in autosomal dominant RP.

Author Affiliations: Retina Foundation of the Southwest (Drs Wen, Birch, and Hughbanks-Wheaton, Ms Locke, and Mr Klein) and Department of Ophthalmology, The University of Texas Southwestern Medical Center (Drs Birch and Hughbanks-Wheaton), Dallas, and Human Genetics Center, School of Public Health, and Department of Ophthalmology and Visual Science, The University of Texas, Houston (Drs Bowne, Sullivan, Ray, and Daiger).
METHODS

PATIENTS

Patients included in this study were originally referred to the Retina Foundation of the Southwest by ophthalmologists specializing in retinal diseases. Blood samples were obtained for genetic screening after obtaining informed consent. After identification of KLHL7 mutations, patients were invited back to the Retina Foundation of the Southwest for comprehensive assessment. In family RFS038, three affected members were available (all male, with age at ascertainment of 45, 50, and 76 years), whereas only the probands were available in families RFS073 (female, with ages at ascertainment of 59 years) and RFS061 (male, with age at ascertainment of 35 years). The tenets of the Declaration of Helsinki were followed, and all the individuals gave written informed consent after a full explanation of the tests and procedures. All the procedures were approved by The University of Texas Southwestern institutional review board.

CLINICAL EXAMINA

Best-corrected visual acuity was measured with the electronic visual acuity tester using the Early Treatment of Diabetic Retinopathy Study algorithm. To examine differences in color discrimination, the Hardy-Rand-Rittler pseudochromatic plates and Roth 28-hue desaturated panel test were used. Central visual fields were measured using a Humphrey visual field analyzer (30-2 SITA Fast Program; Humphrey Instruments, San Leandro, California). Peripheral visual fields were measured with Goldmann perimetry using III-4-e and V-4-e light stimulus sizes. After pupil dilation (tropicamide, 1.0%; and phenylephrine hydrochloride, 2.5%) and 30-minute dark adaptation, thresholds were measured from the horizontal image of the left eye: retinal nerve fiber layer, total retina (neural retina plus RPE), OS+ (photoreceptor outer segment and RPE), and REC+ (RPE, photoreceptor outer segment, inner segment, outer nuclear layer, and outer plexiform layer). The segmentation approach and strategy were comparable to the software (MATLAB based; MathWorks, Natick, Massachusetts) developed by Hood et al.

SEGMENTATION OF OCT

Optical coherence tomography images were exported into tagged image file format (from Spectralis HRA-OCT), which also provided the scaling for the acquired OCT images. A custom-designed OCT segmentation program built in IGOR Pro (IGOR Pro 6.12; WaveMetrics, Inc, Lake Oswego, Oregon) was used to profile and measure the thickness of total retina and retinal layers represented in the OCT images. The following thicknesses were measured from the horizontal image of the left eye: retinal nerve fiber layer, total retina (neural retina plus RPE), OS+ (photoreceptor outer segment and RPE), and REC+ (RPE, photoreceptor outer segment, inner segment, outer nuclear layer, and outer plexiform layer).

GENETIC TESTING

Genomic DNA was amplified (AmpliTaq Gold 360 master mix; Applied Biosystems, Foster City, California) using standard amplification conditions. The polymerase chain reaction product was treated before sequencing (ExoSapIt; USB, Cleveland, Ohio). Clean polymerase chain reaction product was sequenced (BigDye Terminator version 1.1), treated (BigDye Xterminator), and run on an automated capillary sequencer (3730XL or 3500) (all from Applied Biosystems). Sequence analysis was performed using a software program (SeqScape version 2.7, Applied Biosystems).

RESULTS

PEDIGREES

Figure 1 shows pedigrees for the 3 families with mutations in the KLHL7 gene. All 3 families demonstrate a RP transmission patterns spanning 3 generations. The pro-
band (III-3) of family A (RFS038) was first ascertained at age 76 years. Three sons (IV-1, IV-2, and IV-3) and 2 grandsons (V-1 and V-2) of the proband (III-3) were also examined. Retinitis pigmentosa was diagnosed in 2 of the sons (IV-1 and IV-2), while the other son (IV-3) and grandchildren (V-1 and V-2) showed normal fundus appearance and normal ERG results. Genetic sequencing of the \textit{KLHL7} gene revealed a c.458C>T mutation in affected members of family A, which predicts a p.Ala153Val change at the protein level.\(^1\) In family B (RFS073) and family C (RFS061), only the probands were available for on-site examination. Genetic sequencing identified a c.449G>A (p.Ser150Asn) mutation in family B and a c.457G>A (p.Ala153Thr) mutation in family C.\(^1\) The mean (SD) age at ascertainment was 53.0 (15.5) years, with the median age at 50 years.

FUNDUS APPEARANCE

\textbf{Figure 2} shows the fundus appearance for 4 patients with a \textit{KLHL7} mutation. All patients showed characteristic retinal bone spicule pigmentation. The color fundus image (first row), red-free fundus image (second row), and infrared fundus image (third row) showed classic signs of RP, including clear loss of retinal tissue in the periphery, bone spicule pigmentation, arteriolar attenuation, and waxy optic pallor. The right eye of B-III-3 exhibited fundusoscopic evidence of GA, including macular hypofluorescence visualized by fundus autofluorescence imaging.

Table 1. Basic Clinical Findings in Family Members Carrying \textit{KLHL7} Mutations

<table>
<thead>
<tr>
<th>Family Member</th>
<th>Sex/Age, y</th>
<th>OD</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-III-3</td>
<td>M/76</td>
<td>HM</td>
<td>20/60</td>
</tr>
<tr>
<td>A-IV-1</td>
<td>M/65</td>
<td>20/20</td>
<td>20/20</td>
</tr>
<tr>
<td>A-IV-2</td>
<td>M/59</td>
<td>20/32</td>
<td>20/32</td>
</tr>
<tr>
<td>B-III-3</td>
<td>F/82</td>
<td>HM</td>
<td>CF</td>
</tr>
<tr>
<td>C-III-1</td>
<td>M/49</td>
<td>20/20</td>
<td>20/50</td>
</tr>
</tbody>
</table>

Abbreviations: CF, counting fingers; HM, hand motion.

CLINICAL FINDINGS

\textbf{Table 1} summarizes the phenotypic results attained during the most recent visits. For patients 65 years or younger (A-IV-1, A-IV-2, and C-III-1), best-corrected visual acuity was 20/50 or better in at least one eye. At age 76 years, A-III-3 had visual acuity of 20/60 OS but could observe hand motion only in the right eye, possibly because of cataract. B-III-3 was the oldest individual among 3 af-
fected families. At age 82 years, her visual acuity was hand
motion in the right eye and counting figures in the left
eye. This finding is consistent with the development of
GA in both eyes of this patient. In addition, IV-1 and IV-2
of family A showed nonspecific color vision deficiency.
Night vision loss was one of the major complaints among
patients carrying the KLHL7 mutation. The mean (SD)
dark-adapted thresholds were 6.1 (0.3), 3.1 (0.3), and
2.2 (0.2) log micro-apostilibs for A-III-3, A-IV-1, and
A-IV-2, respectively, at their most recent visits, which
were above the mean (SD) normal value of 1.75 (0.25)
log micro-apostilibs.11
These patients identified with KLHL7 mutations have
been observed for up to 27 years. In general, visual acu-
ity reduction did not manifest until 50 years of age. Four
of 5 patients had visual acuity better than 20/50 in at least
one eye through their 60s. Visual acuity showed min-
imal change over 15 years in A-IV-1 (from age 50-65 years),
A-IV-2 (45-59 years), and C-III-1 (35-49 years). Rapid
deterioration of visual acuity was observed only in III-3
of family B, who carried the c.449G>A mutation in the
KLHL7 gene. The visual acuity in the left eye dropped
from 20/40 at age 59 years to 20/200 at age 74 years, pre-
sumably because of the development of GA.

VISUAL FIELDS
Visual field restriction was the initial motivation for all 3
proband to seek medical attention. Static visual field test-
ing (Humphrey; Carl Zeiss, Inc, Dublin, California)
was used to measure the central visual field loss. Figure 3A
shows the visual field in the central 60° in A-IV-1 (age, 65
years), A-IV-2 (age, 59 years), and C-III-1 (age, 49 years)
at their most recent visits. Visual field diameters were re-
tained in the central 20° in IV-1 and IV-2 of family A. Quan-
titatively, the reduction in total visual field sensitivity from
normal ranged from 85% to 94% in these 2 patients
(Table 1). Preserved visual field was less than 10° in the
right eye of C-III-1 at age 49 years, with 90% reduction in
total visual field sensitivity. The most recent Humphrey vi-
sual field test for B-III-3 was at age 63 years, when her cen-
tral visual field was constricted to less than 10°.
Goldmann perimetry was available for 2 patients (A-
IV-1 and B-III-3). Figure 3B shows the pericentral scoto-
mas in these 2 patients. For A-IV-1 at age 65 years, Gold-
mann perimetry (V-4-e) showed visual field retention of
70° to 90° temporally and 35° to 55° nasally in addition to
the central 10° field. The III-4-e stimulus size was also used
for this patient. The resulting visual field (dashed line) was
slightly smaller than that when using the V-4-e stimulus
size: visual field remains between 70° to 80° temporally and
35° to 50° nasally in addition to central 10°. For B-III-3 at
age 60 years, Goldmann perimetry showed visual fields pre-
served between 65° and 80° temporally in both eyes in ad-
dition to 10° central vision. Therefore, results from Gold-
mann perimetry showed that these 2 patients retained fields
in the far periphery in addition to the central field.
Longitudinal data for static perimetry were available for
A-IV-1 and A-IV-2. Preserved central visual field showed no change in A-IV-1 between age 62 years (cen-
tral 20°) and age 64 years (central 20°). However, pre-
served central visual field constricted from 30° to 20° be-
tween age 56 and 59 years in A-IV-2.

FULL-FIELD ERG
Figure 4 shows the ERG waveforms most recently recorded from individuals in the 3 families using the International
Society for Clinical Electrophysiology of Vision standard
protocol. The proband of family A (III-3 [76-year-old male])
had nondetectable ERG signals. The 2 sons with the
c.458C>T mutation (IV-1 and IV-2) showed reduced rod
amplitudes and delayed 31-Hz flicker implicit times (Figure 4
and Table 2). Probands of family B (III-3) and family C
(III-1) also exhibit ERG changes characteristic of RP. Assum-
marized in Table 2, all patients showed reduced ERG

©2011 American Medical Association. All rights reserved.
Table 2. Full-Field Electroretinographic Findings in Left Eyes of Family Members Carrying *KLHL7* Mutations

<table>
<thead>
<tr>
<th>Age, y</th>
<th>Rod Response, µV</th>
<th>Maximal Response, µV</th>
<th>31-Hz Flicker</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amplitude, µV</td>
</tr>
<tr>
<td>A-III-3</td>
<td>ND<sup>a</sup></td>
<td>ND<sup>a</sup></td>
<td>ND<sup>b</sup></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-IV-1</td>
<td>9.0</td>
<td>NA<sup>c</sup></td>
<td>29</td>
</tr>
<tr>
<td>50</td>
<td>7.0</td>
<td>81</td>
<td>26</td>
</tr>
<tr>
<td>62</td>
<td>4.6</td>
<td>61</td>
<td>27</td>
</tr>
<tr>
<td>A-IV-2</td>
<td>4.3</td>
<td>34</td>
<td>17</td>
</tr>
<tr>
<td>50</td>
<td>ND<sup>a</sup></td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>65</td>
<td>ND<sup>a</sup></td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>B-III-3</td>
<td>3.7</td>
<td>30</td>
<td>NA</td>
</tr>
<tr>
<td>59</td>
<td>2.9</td>
<td>27</td>
<td>NA</td>
</tr>
<tr>
<td>60</td>
<td>ND<sup>a</sup></td>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>61</td>
<td>ND<sup>a</sup></td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>62</td>
<td>ND<sup>a</sup></td>
<td>21</td>
<td>NA</td>
</tr>
<tr>
<td>63</td>
<td>ND<sup>a</sup></td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>C-III-1</td>
<td>35</td>
<td>ND<sup>a</sup></td>
<td>45</td>
</tr>
</tbody>
</table>

Abbreviations: NA, not available; ND, nondetectable.

^aNondetectable at criterion amplitude of 3.0 µV.

^bNondetectable at criterion amplitude 0.1 µV.

^cData unavailable at International Society for Clinical Electrophysiology of Vision standard flash intensity.

Figure 4. Most recent International Society for Clinical Electrophysiology of Vision standard full-field electroretinography (ERG) waveforms recorded in 3 families harboring *KLHL7* mutations. Compared with a full-field electroretinogram recorded from a healthy individual, patients with *KLHL7* mutations showed reduced amplitude and delayed timing to all stimuli. VA indicates visual acuity.
amplitude and delayed 31-Hz flicker implicit time. For C-III-1 at age 35 years, ERG rod response was nonde-
tectable. The 31-Hz response amplitude (25 µV) was
reduced 61% from the age-matched mean normal of 65
µV.12 The 31-Hz flicker implicit time (38 milliseconds)
was significantly delayed from the age-matched normal
upper limit of 32 milliseconds. Longitudinal data
showed that the rod response amplitudes in these patients
were reduced by at least 92% from the mean normal at
ascertainment. At their most recent visits, rod responses
were not detectable in any patient except A-IV-1 (rod amplitude,
5 µV). However, preserved cone 31-Hz flicker amplitudes
at their most recent visits were a mean (SD) of 23.3% (21.0%)
(range, 5%-58%) of age-matched normal values. The mean
(SD) decline in light-adapted 31-Hz flicker response was
3.0% (3.0%) per year.

To measure rod and cone activation, we derived maxi-
mum amplitude and sensitivity from a-wave responses
to high-intensity flashes. Figure 5A shows rod-only re-
sponses to 4 intensities (3.2, 3.6, 4.1, and 4.4 log micro-apostilibs) in A-IV-1 and in a healthy individual are shown. Solid lines indicate a-wave waveforms; dashed lines, model fit.13,14 Derived rod-only waveforms were obtained by subtracting cone components from dark-adapted waveforms.7 C, Rod recovery kinetics were measured using the paired-flash protocol.7-9 Recovery of rod a-waves was shown in A-IV-2 and in a healthy individual. Recovery kinetics were fitted with an exponential model to derive the rod inactivation fit variable values,7-9 which are indicated by the dashed lines extending from the fitted solid lines. A-IV-1 exhibited shorter-than-normal recovery, with the rod inactivation fit variable of 402 milliseconds for A-IV-2, which is shorter than normal.8 VA indicates visual acuity.

Table 3. Rod and Cone Activation and Inactivation in Left Eyes of Family Members Carrying KLHL7 Mutations

<table>
<thead>
<tr>
<th>Age, y</th>
<th>Rod Activation Fit</th>
<th>Cone Activation Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitivity</td>
<td>Maximum Amplitude</td>
</tr>
<tr>
<td>A-IV-1</td>
<td>Rod Activation Fit</td>
<td>Cone Activation Fit</td>
</tr>
<tr>
<td>50</td>
<td>1.00</td>
<td>1.47</td>
</tr>
<tr>
<td>62</td>
<td>0.49</td>
<td>1.80</td>
</tr>
<tr>
<td>65</td>
<td>0.44</td>
<td>1.80</td>
</tr>
<tr>
<td>A-IV-2</td>
<td>Rod Activation Fit</td>
<td>Cone Activation Fit</td>
</tr>
<tr>
<td>45</td>
<td>0.70</td>
<td>1.29</td>
</tr>
<tr>
<td>56</td>
<td>0.51</td>
<td>1.30</td>
</tr>
<tr>
<td>59</td>
<td>0.23</td>
<td>1.00</td>
</tr>
<tr>
<td>C-III-1</td>
<td>Rod Activation Fit</td>
<td>Cone Activation Fit</td>
</tr>
<tr>
<td>35</td>
<td>0.82</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Figure 5. Photoreceptor activation and inactivation kinetics in patients with KLHL7 mutations. A and B, Representative derived rod-only (A) and cone-only (B) a-waves to 4 high intensities (3.2, 3.6, 4.1, and 4.4 log micro-apostilibs) in A-IV-1 and in a healthy individual are shown. Solid lines indicate a-wave waveforms; dashed lines, model fit.13,14 Derived rod-only waveforms were obtained by subtracting cone components from dark-adapted waveforms.7 C, Rod recovery kinetics were measured using the paired-flash protocol.7-9 Recovery of rod a-waves was shown in A-IV-2 and in a healthy individual. Recovery kinetics were fitted with an exponential model to derive the rod inactivation fit variable values,7-9 which are indicated by the dashed lines extending from the fitted solid lines. A-IV-1 exhibited shorter-than-normal recovery, with the rod inactivation fit variable of 402 milliseconds for A-IV-2, which is shorter than normal.8 VA indicates visual acuity.

OCT FINDINGS

Figure 6 shows a 30° spectral-domain OCT image from the horizontal meridian of the left eye in each patient.
In images from A-IV-1 (age, 65 years) and A-IV-2 (age, 59 years), the inner segment–outer segment junction region is only intact within the fovea, consistent with the loss of photoreceptors in the parafoveal region.10 Cystoid macular edema was evident only in C-III-1 at age 49 years (Figure 6). The thickness profile of total retina (neural retina thickness plus RPE thickness) falls mostly within the normal range (gray lines indicate the mean [2 SD]) for patients other than B-III-3, who showed thinner-than-normal foveal thickness in total retina at age 82 years. However, OS+ and REC+ thickness profiles revealed significant reduction in the photoreceptor layer in all 4 patients, nasally and temporally. Three patients with remaining central vision (A-IV-1, A-IV-2, and C-III-1) showed normal OS+ and REC+ thickness in the fovea except for REC+ thickness in C-III-1. B-III-3, with reduced vision because of GA, showed thinner-than-normal foveal thickness. The thickness profile of retinal nerve fiber layer appears irregular and tends to be thicker than normal nasally in these patients.

COMMENT

The mean age at ascertainment of adRP among these patients was 53.0 years, with a median age of 50 years. It has been previously reported that the mean age at onset of adRP, defined as when RP was diagnosed by an ophthalmologist, was 36.9 years, with the median age at 40 years.16 For all types of RP, the mean age at onset was 35.1 years, with the median age at 36.5 years.16 Based on these facts and subjective reports from the patients, it seems that the retinal degeneration associated with KLHL7 mutations has a late onset. In patients for whom longitudinal data were available, progression of visual acuity loss and visual field constriction was slow. In the 2 pa-

<table>
<thead>
<tr>
<th>Family A</th>
<th>Family B</th>
<th>Family C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal F/52 y VA 20/25 OS</td>
<td>A-IV-1 M/65 y VA 20/25 OS</td>
<td>B-III-3 F/82 y VA CF OS</td>
</tr>
<tr>
<td>A-IV-2 M/59 y VA 20/32 OS</td>
<td>C-III-1 M/49 y VA 20/50 OS</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6. Spectral-domain optical coherence tomography images acquired from patients carrying KLHL7 mutations (central 30° and horizontal meridian). Images were segmented to show the thickness profile of retinal nerve fiber layer (RNFL), total retina (neural retina plus retinal pigment epithelium), OS+ (photoreceptor outer segment and retinal pigment epithelium), and REC+ (retinal pigment epithelium, photoreceptor outer segment, inner segment, outer nuclear layer, and outer plexiform layer). CF indicates counting fingers; VA, visual acuity.
patients with Goldmann visual field analysis, visual field loss (c.458C>T or c.449G>A) spares the far periphery, which is consistent with a previous study based on a family carrying the c.458C>T mutation in the KLRH1 gene. Visual acuity in the left eye of B-III-3 showed a drop from 20/40 at age 59 years to 20/200 at age 74 years in association with GA that developed in this patient. Other patients showed visual acuity better than 20/50 in their 60s.

Similar to other forms of RP, both rod and cone full-field ERG amplitudes were significantly reduced, and 31-Hz flicker ERG timing was significantly delayed. The ERG findings in adRP associated with other mutations.9 Mutations in the KLRH1 gene seem to be associated with a form of adRP that preferentially affects rod photoreceptors. According to longitudinal data, all patients exhibited significant elevation in dark-adapted threshold at ascer- tainment. This suggests that night vision loss had developed long before the initial visit. Rod ERG amplitudes to International Society for Clinical Electrophysiology of Vision standard stimuli were severely attenuated or absent. Rod photoreceptor responses to high-intensity stimuli showed decreased sensitivity and gain variables, consistent with previous evidence in adRP.20 A shorter-than-normal photoreponse, consistent with faster-than-normal recovery kinetics, is in agreement with findings in adRP associated with other mutations.9

The remaining photoreceptor thickness indexed by OS+ and REC+ matches well with the visual acuity retained. As shown in Figure 6, preservation of foveal photoreceptor layer predicts a visual acuity of 20/50 or better. On the other hand, the proband (III-3) of family B had no preserved photoreceptor structure in the fovea, which is consistent with visual acuity limited to hand motion sensitivity. Segmented OCT thicknesses (OS+ and REC+) seem to be better indicators of visual acuity than total retinal thickness. For example, the cystoid macular edema present in C-III-1 led to the normal total retinal thickness in the fovea. The thickening of retinal nerve fiber layer in patients with RP shown in Figure 6 is in agreement with what was previously reported.10

In summary, we characterized the visual phenotype of patients with adRP caused by mutations in the BTB-Kelch gene, KLRH1. The mutations described in this study include c.458C>T, c.449G>A, and c.457G>A; the latter two have not been characterized previously. We found that the visual phenotype is similar among patients with these mutations. Late onset, slow progression, strong retention of foveal function, and bilateral concentric constriction of the visual fields with far periphery sparing may guide mutation screening in adRP.

Submitted for Publication: February 28, 2011; final re-
vision received May 26, 2011; accepted May 28, 2011.

Correspondence: Yuquan Wen, PhD, Retina Foundation of the Southwest, 9900 N Central Expressway, Ste 400, Dallas, TX 75231 (ywen@retinafoundation.org).

Author Contributions: Dr Birch had full access to all the data in the study and takes responsibility for the integ-

R01 09076 from the National Eye Institute.

Financial Disclosure: None reported.

Funding/Support: This study was supported by grants from the Foundation Fighting Blindness and NEI R01 09076 from the National Eye Institute.

REFERENCES

