Optimal management of optic pit–related maculopathy remains to be determined. The fluid source for the maculopathy also remains controversial. In this article, we present a unique surgical technique for internal drainage of the intraretinal fluid and describe the intraoperative use of spectral-domain optical coherence tomography to assist in the surgical management of this condition. Pars plana vitrectomy was performed with elevation of the posterior hyaloid. Following an air-fluid exchange, aspiration over the optic nerve pit was performed. Following aspiration, intraoperative spectral-domain optical coherence tomography demonstrated collapse of the retinoschisis, strongly suggesting a connection between the vitreous cavity and the intraretinal fluid.

In this study, we used a handheld intraoperative SD-OCT device (Bioptigen, Research Triangle Park, North Carolina) to analyze the effects of surgical maneuvers during pars plana vitrectomy (PPV) for macular retinoschisis associated with an optic pit. High-resolution images of the optic nerve head and the macula were obtained with serial volumetric analysis. Intraoperative imaging established a likely connection between the vitreous cavity and the macular retinoschisis. We were unable to identify any other published cases demonstrating the probable in vivo connection between the vitreous cavity and the intraretinal fluid as well as the use of intraoperative SD-OCT in the analysis of PPV for this condition.
This article describes a unique technique for internal drainage of intraretinal fluid secondary to an optic pit. Additionally, we used real-time volumetric analysis of optic nerve pit surgery by performing intraoperative SD-OCT for examination and measurements prior to and after surgical manipulations (ie, elevating the posterior hyaloid, fluid-air exchange with optic pit aspiration).

The observations in this case support a functional connection between the vitreous cavity and the intraretinal schisis, even though no lumen was visible on high-resolution SD-OCT. Traction on the inner retina during posterior hyaloid separation appeared to increase the nasal height of the schisis, while aspiration at the optic pit clearly decreased the macular volume and caused a localized collapse of the schisis at the nasal aspect of the macula, proximal to the optic nerve pit. The macular volume decreased both following posterior hyaloid elevation and following aspiration at the optic pit. High aspiration during engagement of the hyaloid may have resulted in fluid aspiration through the pit. Once the tractional force of the hyaloid was removed, direct aspiration appeared to result in the collapse of a portion of the macular schisis. This along with the absence of any visible connecting channel on SD-OCT suggests a more sievelike connection between the vitreous cavity and the intraretinal space at the pit. As previously reported, the ability to internally drain fluid also supports a rhegmatogenous component to the fluid accumulation.1

Although a connection between the vitreous cavity and the intraretinal space appears most likely given our findings, additional mechanisms for the observations should be considered. Rather than fluid moving to the vitreous, the fluid could shift away from the peripapillary region either anteriorly into the more peripheral retina or posteriorly into the retrolaminar subarachnoid space of the optic nerve. The former is less likely because of the supine position

Figure 1. Fundus photograph and fluorescein angiograms. A, Color fundus photograph of the left eye showing the optic nerve pit and peripapillary pigmentary changes with blunting of the foveal light reflex. B, Midphase fluorescein angiogram showing a mild window defect in the area of the pigmentary changes. C, Late-phase fluorescein angiogram without evidence of leakage.
Figure 2. Serial volumetric analysis of overlapping macular areas with spectral-domain optical coherence tomography (SD-OCT). A, D, G, J, and M, The first column shows summed voxel projections with corresponding overlapping areas (blue rectangles). The summed voxel projections are rotated because of varied orientations of the handheld SD-OCT probe. B, E, H, K, and N, In the second column, each summed voxel projection is rotated to align with the overlapped area. Included in the overlapped area is the overlay of a tomographic map of the volumetric analysis. Red corresponds to the highest retinal thickness; blue, the lowest retinal thickness. C, F, I, L, and O, The third column shows corresponding B-scans taken at the various times. A-C, Preoperative SD-OCT imaging with significant diffuse macular thickening, more prominent on the nasal side of the fovea. D-F, Intraoperative SD-OCT imaging following elevation of the posterior hyaloid. Prominent nasal elevation and diffuse retinoschisis are present with residual hyaloidal elements present at the optic nerve. E, The thickness map is similar to the preoperative scan. G-I, Intraoperative SD-OCT imaging following air-fluid exchange with aspiration over the optic pit. H and I, Imaging is performed after refilling the eye with fluid. Collapse of the schisis in the nasal aspect of the macula is noted following aspiration, verifying aspiration of intraretinal fluid. H, The thickness map demonstrates decreased retinal thickening in the peripapillary region. J-L, Postoperative SD-OCT imaging at 1 month revealing decreased foveal height and macular retinoschisis with some nasal redistribution of the fluid from the temporal macula. M-O, Postoperative SD-OCT imaging at 9 months revealing continued resolution of the intraretinal fluid.
of the patient and the specific gravity of fluid vs air. A decrease in the macular volume would require the anterior shift to be significant enough to shift the fluid outside the analyzed area. We cannot rule out the possibility that there may have been a posterior shift in fluid to the subarachnoid space of the optic nerve rather than a drainage from the vitreous cavity. Our measurements indicate that the macular volume decreased, suggesting that fluid was likely removed; also, we found no changes in the images of the nerve, although these do not extend deep beyond the globe. Note that the intraoperative OCT scan was completed with a fluid-filled eye following a fluid-air/air-fluid exchange.

Optimal treatment of the maculopathy is unclear. Multiple approaches have been suggested, including laser photocoagulation and PPV with various adjuncts (eg, laser, gas exchange, internal limiting membrane peeling, inner retinal fenestration). However, we were unable to identify other reported cases that documented intraoperative removal of intraretinal fluid through the region of the pit. Our patient demonstrated a progressive decrease in schisis volume with stability of visual acuity following vitrectomy with separation of the posterior hyaloid and fluid-air exchange with localized aspiration at the optic pit. As seen in this case, intraoperative imaging and SD-OCT can play an important role in our understanding of vitreoretinal diseases and the early effect of our surgical interventions.

Submitted for Publication: July 12, 2010; final revision received September 28, 2010; accepted October 18, 2010.

Correspondence: Cynthia A. Toth, MD, Box 3802, Duke University Medical Center, Duke Eye Center, Durham, NC 27710 (cynthia.toth@duke.edu).

Financial Disclosure: Dr Toth has received research support and royalties from Alcon Laboratories and Biopigen. Duke University has an equity interest in Biopigen. Joseph Izatt, PhD, principal investigator on grant R21-EY-019411, also has equity interest in Biopigen. Dr Toth has equity interest in Bioptigen. Duke University has an equity interest in Bioptigen. Financial Disclosure: Dr Toth has equity interest in Bioptigen. Funding/Support: This work was supported by grant R21-EY-019411 from the National Eye Institute.

REFERENCES