ceive earlier treatment derive as much benefit as those who are recalcitrant to standard treatment modalities.

Cyrl A. Dalmon, MD
Naveen S. Chandra, MD
Bennie H. Jeng, MD

Author Affiliations: Department of Ophthalmology (Drs Dalmon and Jeng) and Francis I. Proctor Foundation (Dr Jeng), University of California, San Francisco, and Department of Ophthalmology, San Francisco General Hospital (Dr Jeng), San Francisco, and The Permanente Medical Group, Walnut Creek (Dr Chandra).

Correspondence: Dr Chandra, The Permanente Medical Group, 320 Lennon Ln, Walnut Creek, CA 94598 (nschandra@gmail.com).

Author Contributions: Dr Chandra had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Conflict of Interest Disclosures: None reported.


Epithelial Downgrowth: An Atypical Clinicopathological Case Report

Epithelial downgrowth is a rare but grave complication of intraocular surgery that typically manifests as epithelial sheets, cysts, or pearls. Prognosis is poor as incursion of epithelial cells onto anterior chamber structures can result in corneal decompens-

Figure. Other ocular surface treatment modalities used by 30 patients with dry eye who had a follow-up within 90 days of starting treatment with autologous serum eyedrops (ASEs).

Report of a Case. A 66-year-old woman who had been receiving subconjunctival steroid injections for presumed graft rejection visited in December 2009 with decreased vision in her right eye. Her ocular history included Fuchs endothelial dystrophy and narrow-angle glaucoma. Her right eye had undergone penetrating keratoplasty, cataract extraction, and anterior chamber intracocular lens implantation in November 2006 and pars plana vitrectomy and pars plana Ahmed tube shunt in October 2008.

Examination of the right eye revealed best-corrected visual acuity of 20/150. Intraocular pressure measured less than 5 mm Hg. Slitlamp examination revealed a residual anterior chamber lens implant in the posterior chamber with a pink, fibrous plaque on the anterior surface of the anterior chamber intraocular lens (Figure 1A). The vitreous and retina were normal. Five days later, the plaque resolved without additional intervention. Subsequently, the patient developed a pupillary membrane and inflammatory, “fluffy,” white debris accumulated in the anterior chamber (Figure 1B).

Findings on review of systems and a systemic workup for anterior uveitis were negative. Anterior chamber taps were performed for stains, cultures, polymerase chain reaction, and pathological analysis. Gram stains showed 10 to 25 mononuclear cells per low-power field but no organisms. Fungal stains and bacterial and fungal cultures were negative. Results of polymerase chain reaction were negative for herpes simplex virus, herpes zoster virus, and cytomegalovirus. Cytological analysis showed no morphologic evidence of lymphoid neoplasia. However, degenerating neutrophils and macrophages along with epi-
thelioid nonhematopoietic cells consistent with epithelial downgrowth were identified (Figure 2A). An amorphous pattern of larger cells with hyperreflective nuclei suggestive of epithelial cells was seen on specular microscopy (Figure 1C).

The anterior chamber debris was removed with aspiration and the patient was treated twice with intracameral injections of fluorouracil, 1000 μg/0.1 mL, in a dispersive viscoelastic with complete resolution of the anterior chamber findings. The patient required a repeated penetrating keratoplasty for graft failure that transpired during the course of her treatment. Three months postoperatively, uncorrected visual acuity was 20/40. No recurrence of epithelial or inflammatory anterior chamber debris has occurred (Figure 1D).

The Descemet membrane separated from the overlying stroma intraoperatively. Histopathological analysis did not reveal a migratory path of epithelial cells, although the specimen lacked the complete graft-host junction. A fibrous retrocorneal membrane (Figure 2B) was identified and subsequently classified to be of metaplastic endothelial origin based on Jakobiec and Bhat's established classification of retrocorneal membranes (Figure 2C and D).

Comment. This case illustrates an unusual manifestation of epithelial downgrowth as an amorphous cellular aggregate within the aqueous as opposed to more typical manifestations of epithelial sheets, cysts, or pearls. Our diagnosis was based on the histopathological results of the aqueous tap and specular microscopy. The mechanism of entry of the ectopic epithelial cells remains unclear, but possibilities include entry through the corneal wound during the triple procedure or retrograde flow through the tube. Importantly, epithelial downgrowth should be considered in the differential diagnosis of chronic anterior chamber inflammation and cellular aggregates that are unresponsive to therapy.

In our case, fluorouracil treatment achieved excellent anatomical and visual results. Two cases in 2002 documented the complete resolution of epithelial downgrowth in patients treated with fluorouracil; however, neither case showed post–fluorouracil treatment histopathological correlates. Our patient's eye remains devoid of any ectopic epithelial cells, but her initial graft failed after a retrocorneal membrane had developed. The retrocorneal membrane may have resulted from metaplastic endothelial cell growth due to deposition of hematopoietic or epithelial cells in the anterior chamber, metaplasia of existing endothelial cells, or a reaction between the fluorouracil and epithelial cells.

Author Affiliations: University of Rochester School of Medicine and Dentistry (Ms Venkateswaran) and De-

Figure 1. Clinical photographs. A, Pink, fibrous plaque (asterisk) on the anterior surface of the anterior chamber intraocular lens. B, Inflammatory, white, “fluffy” debris (arrow) free floating in the anterior chamber. Inset, Greater magnification of the debris. C, Specular microscopy findings, with the left panel demonstrating guttae characteristic of Fuchs endothelial dystrophy and the right panel demonstrating an amorphous pattern with larger cells and hyperreflective nuclei. Arrows indicate cells suggestive of epithelial cells (original magnification ×230). D, Complete resolution of the inflammatory or epithelial anterior chamber debris.
Chromoblastomycosis is a chronic subcutaneous mycosis that typically involves the lower extremities. The vast majority of causative microorganisms have melanized cell walls (i.e., are dematiaceous fungi) and belong to 4 genera of saprophytic fungi: *Phialophora*, *Fonsecaea*, *Rhinocladiella*, and *Cladosiphia*

Chromoblastomycosis mimicking melanoma of the ciliary body

A 75-year-old white woman was referred for evaluation of a pigmented lesion of her right na...