RESEARCH LETTER

Quantitative Autofluorescence as a Clinical Tool for Expedited Differential Diagnosis of Retinal Degeneration

Homozygous and compound heterozygous mutations in ABCA4 are associated with multiple phenotypes, including bull’s-eye maculopathy (BEM). The BEM fundus patterning can also be conveyed by other genes such as the retinitis pigmentosa guanosine triphosphatase regulator gene (RPGR), a gene that encodes a protein involved in trafficking to the outer segment. The carrier frequency of disease-causing mutations in ABCA4 is 1 in 20. Even after complete sequencing of the ABCA4 exons and adjacent intronic sequences in patients with a clinical diagnosis of Stargardt disease 1 (STGD1), 15% to 20% of cases still have only 1 identified disease-causing mutation and no mutations are found in 10% to 15% of individuals. Thus, the phenotypic and allelic variability of ABCA4-related disease remains a challenge.

Due to reduced protein function, ABCA4 mutations trigger elevated accumulation of bisretinoid lipofuscin in retinal pigment epithelial cells. This increase is revealed in most but not all cases as augmented fundus autofluorescence (AF), the inherent AF of the retina that is emitted with 488-nm excitation. Using a standardized method for quantification of fluorescence intensities in fundus AF images (quantitative fundus AF [qAF]), increased qAF levels have been observed in patients with STGD1 even at young ages and in fundus areas that qualitatively appear to be unaffected. Herein, we show that qAF is a clinical tool that may help in the management of inherited retinal diseases.

Report of a Case | A man in his mid-40s had blurred central vision, photophobia, and nyctalopia since childhood. Examination showed a BEM that was evident in fundus AF images, but there were no flecks, intraretinal pigment migration, retinal vessel attenuation, or optic nerve pallor (Figure 1). He had previously been clinically diagnosed as having STGD1 and genetic screening with an ABCA4 array had revealed a single copy of an ABCA4 gene variant (rs1800548, p.E471K). Sanger sequencing confirmed this change. Retinal disease was reported in his brother and maternal grandfather. As previously described, the proband’s mother had reported being asymptomatic but was found to exhibit decreased visual acuity, BEM in the right eye, and tapetal reflex in both eyes. Whole-exome sequencing confirmed the ABCA4 variant and detected a novel mutation in the open reading frame 15 domain.
of RPGR (c.3070G>T, pGlu1024X, OMIM #312610). The mean qAF values of the patient were found to be within the range observed in healthy eyes. The patient’s mean values were also lower than in many patients of the same age with STGD1 (Figure 1 and Figure 2).

Discussion | X-linked retinitis pigmentosa accounts for up to 20% of families with retinitis pigmentosa, and RPGR is the most frequently mutated gene in X-linked retinitis pigmentosa. In our proband, the inheritance pattern was typical of X-linked disease and the report of a tapetal reflex in the mother was consistent with X-linked retinitis pigmentosa. It was ultimately apparent that the BEM phenotype had also been conferred by the mutation in RPGR. Nevertheless, given that disease caused by mutations in ABCA4 can manifest as BEM, that disease-causing variants in ABCA4 are copious (approximately 800 sequence variants), and that a second mutation is frequently not causing variants in the Exome Variant Server indicated that this allele is unlikely to be disease causing.

Marcela Marsiglia, MD, PhD
Winston Lee, BS
Vinit B. Mahajan, MD, PhD
Jana Zernant, MS
François C. Delori, PhD

Stephen H. Tsang, MD, PhD
Janet R. Sparrow, PhD

Author Affiliations: Department of Ophthalmology, Columbia University, New York, New York (Marsiglia, Lee, Zernant, Tsang, Sparrow); Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City (Mahajan); Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts (Delori); Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts (Delori).

Corresponding Author: Janet R. Sparrow, PhD, Department of Ophthalmology, Columbia University, 630 W 168th St, New York, NY 10032 (jrs88@columbia.edu).

Published Online: November 6, 2014. doi:10.1001/jamaophthalmol.2014.4507.

Author Contributions: Dr Sparrow had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Marsiglia, Tsang, Sparrow.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Marsiglia, Mahajan, Zernant, Sparrow.

Critical revision of the manuscript for important intellectual content: Marsiglia, Lee, Delori, Tsang, Sparrow.

Statistical analysis: Delori, Sparrow.

Obtained funding: Sparrow.

Administrative, technical, or material support: Marsiglia, Lee, Mahajan, Zernant, Sparrow.

Study supervision: Tsang, Sparrow.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none were reported.

Funding/Support: This work was supported by grants EY024091, EYO19861, and P30EY019007 from the National Eye Institute and a grant from Research to Prevent Blindness to the Department of Ophthalmology, Columbia University.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study: collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.


OBSERVATIONS

Endothelial Circles After Nd:YAG Posterior Capsulotomy

The Nd:YAG laser uses infrared light focused at 1064 nm. Using a short pulse and high power, it causes plasma formation, resulting in shock or acoustic waves that disrupt target tissue. It is commonly used for laser peripheral iridotomies and posterior capsulotomies. Common complications after Nd:YAG capsulotomy include intraocular pressure elevation, intraocu-