Magnetic Resonance Imaging in Epidemic Adenoviral Keratoconjunctivitis

Most clinicians would agree that there is no reason to obtain a magnetic resonance (MR) scan to evaluate a patient with viral conjunctivitis. We scheduled a patient for an annual MR scan to monitor his optic nerve meningiomas. By coincidence, he had florid viral conjunctivitis the day the scan was performed. It showed severe eyelid edema, contrast enhancement of the anterior orbit, enlargement of the lacrimal gland, and obstruction of the nasolacrimal duct. Adenovirus produces deep orbital inflammation in addition to infection of the conjunctival surface.

Report of a Case | A 36-year-old man with suspected bilateral optic nerve sheath meningiomas was scheduled for a routine MR scan. The goal was to determine whether comparison with an MR scan obtained a year earlier would reveal growth of the tumors. When the scan was ordered, he had no eye infection. Two weeks later, when the scan was performed, viral conjunctivitis had developed. The scan was not postponed because the patient did not complain of his new symptoms. After the study was finished, the neuroradiologist reported a new inflammatory process in the right orbit. The patient was examined immediately in the eye clinic, revealing classic signs of viral conjunctivitis (Figure 1A). There was ocular injection, chemosis, and swelling of the right eyelids. Slitlamp examination showed follicular conjunctivitis and diffuse epithelial keratitis. Fluid-attenuated inversion recovery sequences showed extensive diffuse edema of the anterior orbit, extending even into the premalar region (Figure 1B). A conjunctival swab was placed in viral transport medium, which was used to inoculate an A549-cultured cell line. The specimen from the patient induced cytopathic changes; a direct fluorescent antibody against adenovirus antigen confirmed the diagnosis of adenoviral keratoconjunctivitis (Figure 1C). Sequence analysis of the viral isolate showed that the infection was caused by adenovirus type D, serotype 8.

A coronal T1-weighted MR scan showed marked gadolinium enhancement of the conjunctiva and soft tissues surrounding the right globe (Figure 2A). In the axial plane, edema was evident in all layers of the eyelid (Figure 2B). The lacrimal gland was enlarged on the right side. This asymmetry was confirmed by coronal imaging (Figure 2C). The extraocular eye muscles were normal. The meningiomas were visible as rings of gadolinium enhancement around the optic nerves. The right nasolacrimal duct demonstrated thickening of the mucosa and loss of the air signal within the lumen, which was present on the normal left side (Figure 2D).

Discussion | Adenoviral conjunctivitis is the most common cause of acute eye infection. Millions of cases occur every year, but MR findings have been reported previously in only a single patient, who developed massive bilateral eyelid cysts. Unintentionally, we imaged a patient with a typical case caused by a viral strain associated with epidemic keratoconjunctivitis. The main findings were edema and inflammation of periorbicular tissue in the anterior orbit, enlargement of the lacrimal gland, and nasolacrimal duct compromise. The latter findings suggest that adenovirus conjunctivitis is accompanied by dacryoadenitis and dacryocystitis. Infection of these structures contributes to epiphora, a common symptom in viral conjunctivitis. It is not surprising that viral infection should spread to the lacrimal adnexa, because they are in anatomical contiguity with the conjunctiva. By analogy, MR imaging in rhinovirus infection often shows mucosal thickening and fluid in the paranasal sinuses.

Although adenovirus infection targets the conjunctival surface, these MR images reveal that the infection induces an inflammatory process that extends surprisingly deep into the orbit. Our case presented as a typical infection and the patient...
recovered uneventfully, indicating that deep tissue inflammation, dacryoadenitis, and dacryocystitis are likely to be common manifestations of adenoviral conjunctivitis.

Jonathan C. Horton, MD, PhD
Steven Miller, MD, PhD

Author Affiliations: Beckman Vision Center, University of California, San Francisco (Horton); Department of Laboratory Medicine, University of California, San Francisco (Miller).

Corresponding Author: Jonathan C. Horton, MD, PhD, Beckman Vision Center, University of California, San Francisco, 10 Koret Way, San Francisco, CA 94143 (hortonj@vision.ucsf.edu).


Author Contributions: Drs Horton and Miller had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Horton.

Acquisition, analysis, or interpretation of data: Horton, Miller.

Drafting of the manuscript: Horton.

Critical review of the manuscript for important intellectual content: Horton, Miller.

Obtained funding: Horton.

Administrative, technical, or material support: Horton, Miller.

Study supervision: Horton.

Conflict of Interest Disclosures: All authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none were reported.

Funding/Support: This work was supported by grants EY02177 (Dr Horton) and EY02662 (Beckman Vision Center) from the National Eye Institute and a physician-scientist award from Research to Prevent Blindness (Dr Horton).

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

En Face Optical Coherence Tomography of Outer Retinal Discontinuity and Fan-Shaped Serous Macular Detachment in Diabetic Macular Edema

We report en face optical coherence tomographic (OCT) imaging of serous macular detachment secondary to retinal microangiopathy in a patient with diabetic retinopathy and macular edema. The en face OCT clearly delineated a fan shape of the detachment. Our findings implicate an outer retinal discontinuity as the site through which fluid may have entered the subretinal space.

Optical coherence tomographic examinations have identified discontinuities of the outer aspect of the swollen neurosensory retina in eyes with serous macular detachment from retinal vascular disease.1 To our knowledge, the pathophysiologic relationship between such outer retinal discontinui-