Intravitreal Dexamethasone Effect on Intravitreal Vancomycin Elimination in Endophthalmitis

Susanna S. Park, MD, PhD; Robert V. Vallar, MD; Chian Huey Hong, MD; Sylviane von Gunten, MD; Kate Ruoff, PhD; Donald J. D’Amico, MD

Objective: To determine whether intravitreal dexamethasone administration can alter the elimination of intravitreal vancomycin hydrochloride in rabbit eyes with experimental Streptococcus pneumoniae endophthalmitis.

Methods: Albino rabbits were infected with an intravitreal inoculum of S pneumoniae (2 × 10³ colony-forming units) and randomized after 24 hours to treatment with intravitreal vancomycin hydrochloride (1 mg), alone or in combination with intravitreal dexamethasone (400 µg). For comparison, uninfected eyes were similarly treated. All eyes were enucleated 24, 48, or 72 hours after treatment, and vitreous levels of vancomycin were quantitated using a fluorescence polarizing immunoassay.

Results: The half-life of intravitreal vancomycin in infected eyes was prolonged from 48 to 84 hours when eyes were treated with dexamethasone. Conversely, such treatment shortened the half-life in uninfected eyes from 56 to 42 hours.

Conclusions: Intravitreal dexamethasone administration reduces the elimination of intravitreal vancomycin in rabbit eyes with pneumococcal endophthalmitis, whereas an opposite effect is noted in uninfected eyes.

Clinical Relevance: In patients with eyes having endophthalmitis caused by virulent organisms, the elimination of intravitreal vancomycin may be reduced when intraocular inflammation is minimized with corticosteroid therapy. This may enhance the efficacy of intravitreal vancomycin therapy in treating the infection.


STREPTOCOCCUS pneumoniae is a frequently encountered microorganism in endophthalmitis associated with a filtration bleb.1,2 Eyes with pneumococcal endophthalmitis generally have a poor outcome, despite prompt initiation of antimicrobial drug therapy, because of the destructive inflammatory response induced by the infection. In a previous study,3 we used a rabbit model of pneumococcal endophthalmitis to show that intravitreal dexamethasone therapy, when used in conjunction with intravitreal vancomycin administration, markedly reduced the inflammation and tissue destruction associated with the infection. A more recent study4 using a contrast-enhanced magnetic resonance imaging technique showed that intravitreal dexamethasone use also markedly reduced the associated blood-ocular barrier breakdown. Because the degree of breakdown correlates with the degree of intraocular accumulation of proteins and leukocytes from the blood,5,7 it is possible that a change in breakdown may affect the rate of elimination of a drug from the eye after intraocular administration. In this study, intravitreal vancomycin levels were measured in healthy eyes and in eyes with pneumococcal endophthalmitis to determine whether intravitreal dexamethasone therapy affects the elimination of vancomycin from the vitreous after intravitreal administration.

See also page 1023

RESULTS

Clinical signs of endophthalmitis were present after 24 hours in all rabbit eyes infected with S pneumoniae. Intravitreal vancomycin concentration 72 hours after treatment was significantly higher in eyes treated with intravitreal dexamethasone and vancomycin compared with those treated with vancomycin alone (P = .03) (Figure 1 and Table 1). Conversely, the intravitreal protein concentration, a marker of inflammation and breakdown of the blood-ocular barrier, was significantly
MATERIALS AND METHODS

CULTURE OF BACTERIA

A strain of S pneumoniae, isolated from a patient’s corneal culture and used in a previous study of experimental pneumococcal endophthalmitis, was grown on Brucella agar containing 5% horse blood (BBL; Becton Dickinson Microbiology Systems, Cockeysville, Md) at 35°C as previously described. The cultured microorganisms were diluted in sterile saline solution to achieve a concentration of 2 × 10^9 colony-forming units (CFU)/mL. The suspension of bacteria was freshly made just before animal inoculation. A viable bacterial count of the suspension was confirmed by the growth on horse blood agar plates.

ANIMAL STUDY

All animals were maintained and cared for in accordance with the Association for Research in Vision and Ophthalmology Resolution on the Use of Animals in Research. All animal experiments were conducted at the University of Texas Southwestern Medical Center, Dallas, in accordance with the study protocol approved by the institutional animal care and research advisory board. New Zealand albino rabbits weighing 2.0 to 2.5 kg were infected with an intravitreal inoculum of S pneumoniae (2000 CFU) as previously described (n = 7 per data point per group, N = 42 rabbits). Briefly, the rabbits were anesthetized with a 1-mL intramuscular dose of a solution containing an equal mixture of ketamine hydrochloride (100 mg/mL; Parke-Davis Pharmaceutical Research, Morris Plains, NJ) and xylazine hydrochloride (20 mg/mL; Mobay Corp, Shawnee, Kan). Topical anesthesia was achieved with 0.5% proparacaine hydrochloride ophthalmic solution (Allergan Inc, Irvine, Calif). When adequate anesthesia was achieved, anterior chamber paracentesis was performed in the right eye with a 30-gauge needle to yield about 0.1 mL of aqueous fluid. The right eye was infected with a direct intravitreal inoculum of live bacteria—a 0.1-mL suspension containing 2000 CFU—delivered through the pars plana into the vitreous. The left eye was treated with an equal volume of sterile saline solution to achieve a concentration of 2 × 10^9 CFU/mL. To determine the effect of infection on the elimination of intravitreal vancomycin, intravitreal vancomycin and protein concentrations were compared between infected and uninfected eyes treated with vancomycin alone. Mean ± SEM intravitreal vancomycin concentration was significantly lower in the infected eyes 72 hours after treatment (78 ± 41 vs 120 ± 22 µg/mL; P = .04). Mean ± SEM intravitreal protein concentration was significantly higher in infected eyes 72 hours after treatment compared with uninfected eyes (24.3 ± 8.5 vs 6.1 ± 3.8 mg/mL; P < .001). On pharmacokinetic analysis, the infection shortened the vitreous half-life of intravitreal vancomycin from 56 to 48 hours (Table 2).

To determine the effect of infection on the elimination of intravitreal vancomycin, intravitreal vancomycin and protein concentrations were compared between infected and uninfected eyes treated with vancomycin alone. Mean ± SEM intravitreal vancomycin concentration was significantly lower in the infected eyes 72 hours after treatment (78 ± 41 vs 120 ± 22 µg/mL; P = .04). Mean ± SEM intravitreal protein concentration was significantly higher in infected eyes 72 hours after treatment compared with uninfected eyes (24.3 ± 8.5 vs 6.1 ± 3.8 mg/mL; P < .001). On pharmacokinetic analysis, the infection shortened the vitreous half-life of intravitreal vancomycin from 56 to 48 hours (Table 2).

COMMENT

The possible benefits of intravitreal or systemic corticosteroid therapy to treat infectious endophthalmitis is an area of ongoing controversy and has yet to be shown in a prospective randomized clinical trial. However, several re-
ports3,13-16 of animal studies show that it reduces inflammation associated with the infection. In the case of pneumococcal endophthalmitis, it was previously shown3 histologically in a rabbit model that a single intravitreal injection of dexamethasone, in conjunction with vancomycin treatment, can dramatically reduce inflammation and tissue destruction associated with the infection.

In this study, we investigated whether intravitreal dexamethasone therapy may also alter the elimination of intravitreally administered antibiotic medication from the eye. Our results show that vancomycin is eliminated less readily in eyes with pneumococcal endophthalmitis when concurrently treated with dexamethasone. This corticosteroid therapy effect is correlated temporally with a reduction in intravitreal protein concentration, which is a marker of intraocular inflammation and blood-ocular barrier breakdown.5,6 Based on this observation, we speculate that the degree of breakdown of the blood-ocular barrier associated with the infection may affect the rate of vancomycin elimination from the eye. Consistent with this hypothesis, we found that, in the absence of corticosteroid therapy, the rate of elimination of intravitreal vancomycin was faster in eyes with pneumococcal endophthalmitis compared with uninfected eyes (Figure 1 and Table 2). Furthermore, results of a previous study17 show that intraocular inflammation can increase elimination of intravitreally administered antibiotic drugs if the predominant route of exit of the drug from the vitreous humor is via the anterior chamber and canal of
Whether this decrease in the elimination of intravitreal vancomycin by corticosteroid therapy in infected eyes alters the bactericidal activity of the antibiotic drug is unknown. We did not address this question because the previous report using this animal model showed that rabbit eyes infected with pneumococcus become sterile within 7 days of infection, regardless of whether the eye was treated with antibiotic drugs. However, the observations made in this study are noteworthy since repeated intravitreal injection of antibiotic is frequently advocated in eyes with endophthalmitis that show minimal response to the initial antibiotic injection due to the relative rapid elimination of intravitreally injected antibiotics from the eye. Unfortunately, these second injections are associated with toxic adverse effects on the retina.

The second observation of this study is that the corticosteroid effect on intravitreal vancomycin elimination noted in eyes with pneumococcal endophthalmitis contrasts with that seen in uninfected eyes. As shown in Figure 1 and Table 2, an opposite effect of dexamethasone injection to the initial antibiotic injection due to the relative rapid elimination of intravitreally injected antibiotics from the eye. Unfortunately, these second injections are associated with toxic adverse effects on the retina.

The second observation of this study is that the corticosteroid effect on intravitreal vancomycin elimination noted in eyes with pneumococcal endophthalmitis contrasts with that seen in uninfected eyes. As shown in Figure 1 and Table 2, an opposite effect of dexamethasone injection to the initial antibiotic injection due to the relative rapid elimination of intravitreally injected antibiotics from the eye. Unfortunately, these second injections are associated with toxic adverse effects on the retina.

The second observation of this study is that the corticosteroid effect on intravitreal vancomycin elimination noted in eyes with pneumococcal endophthalmitis contrasts with that seen in uninfected eyes. As shown in Figure 1 and Table 2, an opposite effect of dexamethasone injection to the initial antibiotic injection due to the relative rapid elimination of intravitreally injected antibiotics from the eye. Unfortunately, these second injections are associated with toxic adverse effects on the retina.

The second observation of this study is that the corticosteroid effect on intravitreal vancomycin elimination noted in eyes with pneumococcal endophthalmitis contrasts with that seen in uninfected eyes. As shown in Figure 1 and Table 2, an opposite effect of dexamethasone injection to the initial antibiotic injection due to the relative rapid elimination of intravitreally injected antibiotics from the eye. Unfortunately, these second injections are associated with toxic adverse effects on the retina.

The second observation of this study is that the corticosteroid effect on intravitreal vancomycin elimination noted in eyes with pneumococcal endophthalmitis contrasts with that seen in uninfected eyes. As shown in Figure 1 and Table 2, an opposite effect of dexamethasone injection to the initial antibiotic injection due to the relative rapid elimination of intravitreally injected antibiotics from the eye. Unfortunately, these second injections are associated with toxic adverse effects on the retina.

The second observation of this study is that the corticosteroid effect on intravitreal vancomycin elimination noted in eyes with pneumococcal endophthalmitis contrasts with that seen in uninfected eyes. As shown in Figure 1 and Table 2, an opposite effect of dexamethasone injection to the initial antibiotic injection due to the relative rapid elimination of intravitreally injected antibiotics from the eye. Unfortunately, these second injections are associated with toxic adverse effects on the retina.

The second observation of this study is that the corticosteroid effect on intravitreal vancomycin elimination noted in eyes with pneumococcal endophthalmitis contrasts with that seen in uninfected eyes. As shown in Figure 1 and Table 2, an opposite effect of dexamethasone injection to the initial antibiotic injection due to the relative rapid elimination of intravitreally injected antibiotics from the eye. Unfortunately, these second injections are associated with toxic adverse effects on the retina.
REFERENCES