Late Retinal Detachment in Patients Born Prematurely

Outcome of Primary Pars Plana Vitrectomy

Claudia Jandeck, MD; Ulrich Kellner, MD; Michael H. Foerster, MD

Objective: To describe the indications and results of pars plana vitrectomy for rhegmatogenous retinal detachment in patients born prematurely.

Patients and Methods: Between 1995 and 2001, primary vitrectomy for retinal detachment was performed in a consecutive series of 11 eyes of 10 patients. Gestational age ranged from 26 to 30 weeks, and birth weight ranged from 810 g to 1475 g.

Results: Myopia was found in 9 of 11 eyes. Two patients initially had a vitreous hemorrhage. One of these children was previously treated with cryotherapy during the acute phase of stage 3+ retinopathy of prematurity. Three eyes had a normal posterior pole and only mild peripheral retinal changes. Primary vitrectomy was performed in all 11 eyes. Patients received follow-up for 7.2 months to 6.6 years (mean, 2.7 years). Three eyes with severe cicatricial changes due to retinopathy of prematurity needed multiple procedures with silicone oil tamponade for reattachment. In 10 (90%) of 11 eyes, the retina was completely attached at the last follow-up visit. Visual acuity ranged from light perception to 20/25 in the affected eye.

Conclusions: Patients born prematurely may develop late-onset retinal detachment due to vitreoretinal changes caused by retinopathy of prematurity. Primary vitrectomy is an effective treatment technique for retinal detachment in patients born prematurely.

Arch Ophthalmol. 2004;122:61-64

Retinopathy of prematurity (ROP) is a neovascular disorder that develops in 11% to 56% of preterm infants with low birth weight. Only 5% to 7% of these cases require coagulation treatment (Cryo ROP Study). In most patients, retinal changes of the acute phase regress completely or with residual vitreoretinal alterations.

In patients born prematurely, increased liquefaction of the vitreous and vitreoretinal traction may cause retinal detachment (RD). Characteristic retinal and vitreous pathologic conditions place these patients at increased risk for retinal complications throughout their lives. Retinal changes in the posterior pole include dragging of the retina, retinal folds, and chorioretinal scarring. Neovascularization, elevated retinal vessels, cystoid degeneration, diffuse retinal pigment epithelial clumping, and retinal holes may be present in the periphery. Changes of the vitreous gel and peripheral vitreous membranes are other common findings.

To date, few published reports describe the functional and morphological outcomes of patients born prematurely who develop late RD. Vitrectomy as an initial treatment was described in 3 small series with 4 eyes each. We report the results of surgery for RD in 11 eyes of 10 patients with premature birth. These patients had a birth weight lower than 1500 g or a gestational age less than 31 weeks and came to us with or without clinically visible retinal cicatricial changes of ROP.

METHODS

In this study, we evaluated a consecutive series of patients born prematurely who had RD between 1995 and 2001 and a follow-up time of at least 6 months. Only 1 of these patients was treated with cryotherapy, according to the recommendations of the Cryo ROP Study, during the acute phase of ROP.

Baseline ocular characteristics were obtained from clinical records. All patients had decreased vision and RD. Best-corrected visual acuity was documented at baseline and the final examination. Spherical equivalent was also recorded at baseline for each eye. Treatment modalities for RD, the need for multiple treatments, and interval until retreatment were noted. Characteristics of the fundus changes were recorded at the first examination or during surgery in cases of vitreous hemorrhage.
tation of visual acuity before surgery and at the final ex-
light perception because of the disease.
were present in 6 contralateral eyes, 2 of which had no
ment. Severe retinal changes due to residual stages of ROP
developed anterior to the scars caused by coagulation treat-
at age 9 years. No characteristics of traumatic RD were
developed recurrent tractional RD even with silicone oil
tamponade. Prior to the fifth surgical procedure, the eye
began to develop phthisis; after this surgery, the retina re-
maind attached. Although the phthisis did not progress for 3½ years, the eye later developed optic atrophy. There-
fore, we decided not to remove the silicone oil. The third
eye with a retinal detachment was primarily treated with SF6.
This RD was due to retinal traction and a new retinal hole
and occurred after gas absorption. In the second opera-
tion, silicone oil was used. After 6 months of follow-up,
the retina is attached and silicone oil removal is sched-
uled.
In 10 (90.9%) of 11 eyes, the retina was completely
attached at the last follow-up visit. In the remaining eye,
only the macula was attached. Four eyes still had a sili-
cone oil tamponade.
In our study, a secondary cataract developed in 3
eyes. One of these patients was an 11-year-old boy with
a primary silicone oil tamponade. The silicone oil was
removed 6 months after primary surgery. Eight months
later a secondary cataract developed, and surgery was per-
formed with intraocular lens implantation. The other 2
patients were aged 36 and 39 years at primary treat-
ment. In both cases, SF6 tamponade was used during pri-
mary surgery. One of these patients developed a rede-
tachment, and silicone oil was used in the second
operation. It was removed 6 months later in combina-
tion with cataract surgery. In both adults, cataract sur-
urgery was performed with intraocular lens implantation.
Three eyes with permanent silicone oil tamponade
were either aphakic initially (n = 2) or the lens was re-
moved during primary surgery (n = 1) because of an-
terior traction. No patient younger than 26 years with SF6
tamponade developed a secondary cataract. Follow-up
for these patients was 0.9 to 6.6 years (median, 2.6 years).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean ± SD</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth weight, g</td>
<td>1128 ± 216</td>
<td>1073</td>
<td>810-1475</td>
</tr>
<tr>
<td>Gestational age, wk</td>
<td>28 ± 1.4</td>
<td>28</td>
<td>26-30</td>
</tr>
<tr>
<td>Age at first surgery</td>
<td>22.0 ± 11.9</td>
<td>15.4</td>
<td>9.9-42.4</td>
</tr>
<tr>
<td>Follow-up duration, y</td>
<td>2.7 ± 1.8</td>
<td>2.4</td>
<td>0.6-6.6</td>
</tr>
</tbody>
</table>

Characteristics of the 10 patients are listed in Table 1
and Table 2. Five of the patients were female, including
1 pair of monozygotic twins. One of the twins had bilat-
eral RD. Birth weight ranged from 810 g to 1475 g,
with a mean of 1128 g and a median of 1073 g. Gestat-
ional age ranged from 26 to 30 weeks, with both a mean
and median of 28 weeks. The age at first retinal surgical
procedure ranged from 9.9 to 42.4 years, with a mean of
22 years and a median of 15.4 years. The mean fol-
low-up time was 2.7 years with a range of 0.6 to 6.6 years.

Baseline spherical equivalent refraction was present
in all patients. Myopia was found in 9 of 11 eyes. The mean
refractive error for all eyes was –8.6 ± 7.0 diopters (D),
with a median of –8.5 D and a range of 0.75 to –17.6 D.

All eyes had RD and vitreoretinal interface changes.
Retinal breaks were located posterior to the equator or
at the edge of the staphyloma in the eyes with high myo-
pia. Two patients initially had vitreous hemorrhage, with
RD detected at an ultrasound examination. Distribution
of fundus characteristics at first examination appears in
Table 3. Five eyes had an abnormal retinal vessel angle,
macular ectopia, retinal folds, pigmentation of the retina, and in 1
pair of monozygotic twins. One of the twins had
characteristic appearance of the premature fundus included myopic changes, tortuous
retinal vessels, temporal dragging of the vessels, macular
ectopia, retinal folds, pigmentation of the retina, and in 1 case chorioretinal scars due to coagulation treatment dur-
ing an acute phase of ROP.

With advances in neonatology, the number of prema-
turely born children surviving and reaching adulthood is
expanding. Premature birth increases the risk of retinal tears
or RD. 7 In our study, we report the results of surgery for
RD in 11 eyes of 10 patients born prematurely who ranged
in age from 9 to 42 years. The characteristic appearance of
the premature fundus included myopic changes, tortuous
retinal vessels, temporal dragging of the vessels, macular
ectopia, retinal folds, pigmentation of the retina, and in 1
case chorioretinal scars due to coagulation treatment dur-
ing an acute phase of ROP.
One eye had been treated with transscleral cryotherapy for stage 3+ ROP. This eye developed RD after blunt trauma. Greven and Tasman described 3 eyes with rhegmatogenous RD 1 to 3 years after cryotherapy for stage 3+ ROP. After a scleral buckling procedure, 2 of 3 eyes were anatomically reattached, but only 1 eye developed useful vision.

In our study, all eyes were treated with primary vitrectomy. In 1 eye, an additional scleral buckling procedure was performed during primary surgery. In 3 (27.3%) of 11 eyes, the initial treatment failed and additional procedures were required. These treatment failures were observed in the 2 eyes with the most severe vitreoretinal traction, due to cicatricial ROP, and in 1 eye with strong adherence of the vitreous cortex.

In older reported series vitrectomy was not available, and only a scleral buckling procedure was used in the treatment of RD associated with regressed ROP. These studies show final success rates of 63% (5 of 8 eyes), 11 87% (34 of 39 eyes), 12 88% (14 of 16 eyes), 13 and 94% (15 of 16 eyes). 14

The good results of some of these studies may be owing to the exclusion of inoperable eyes with vitreoretinal traction. Harris described 52 eyes with late RD and a cicatricial stage of ROP; 13 of these eyes were considered inoperable because of severe vitreoretinal involvement.

Sneed et al treated 16 eyes with late-onset RD associated with regressed ROP. All of their patients demonstrated temporal straightening of the retinal blood vessels and diffuse retinal pigment epithelial clumping. The

<table>
<thead>
<tr>
<th>Patient No./ Sex/GA, wk</th>
<th>Birth Weight, g</th>
<th>Refractive Error, D</th>
<th>Age at Surgery, y Preoperative</th>
<th>Visual Acuity Preoperative</th>
<th>Visual Acuity Postoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/M/26</td>
<td>810</td>
<td>–2.50</td>
<td>9.9 HM</td>
<td>20/25</td>
<td>Vitrectomy, SF6</td>
</tr>
<tr>
<td>2/M/29</td>
<td>970</td>
<td>–12.25</td>
<td>11.6 LP</td>
<td>20/60</td>
<td>Vitrectomy, silicone</td>
</tr>
<tr>
<td>3/F/28</td>
<td>1000</td>
<td>–17.63</td>
<td>13.3 20/200</td>
<td>20/40</td>
<td>Vitrectomy, SF6</td>
</tr>
<tr>
<td>Left eye</td>
<td></td>
<td>–15.50</td>
<td>15.1 20/200</td>
<td>20/40</td>
<td>Vitrectomy, SF6</td>
</tr>
<tr>
<td>Right eye</td>
<td></td>
<td>–15.50</td>
<td>15.0 20/200</td>
<td>20/25</td>
<td>Vitrectomy, SF6</td>
</tr>
<tr>
<td>5/M/27</td>
<td>1475</td>
<td>–8.50</td>
<td>15.4 20/600</td>
<td>LP</td>
<td>Vitrectomy, silicone</td>
</tr>
<tr>
<td>6/M/26</td>
<td>1020</td>
<td>–6.00</td>
<td>17.9 HM 20/800</td>
<td>Vitrectomy, silicone, lensectomy</td>
<td></td>
</tr>
<tr>
<td>7/F/30</td>
<td>1450</td>
<td>–3.63</td>
<td>25.8 20/40</td>
<td>20/25</td>
<td>Vitrectomy, SF6</td>
</tr>
<tr>
<td>8/M/28</td>
<td>1073</td>
<td>0.75</td>
<td>36.1 20/700</td>
<td>20/80</td>
<td>Vitrectomy, encircling band, SF6</td>
</tr>
<tr>
<td>9/F/28</td>
<td>1300</td>
<td>0.00</td>
<td>39.3 20/25</td>
<td>20/80</td>
<td>Vitrectomy, SF6</td>
</tr>
<tr>
<td>10/F/30</td>
<td>1150</td>
<td>–13.75</td>
<td>42.4 20/300</td>
<td>20/700</td>
<td>Vitrectomy, silicone, IOL removal</td>
</tr>
</tbody>
</table>

Abbreviations: D, diopters, ECCE, extracapsular cataract extraction; GA, gestational age; HM, hand movement; IOL, intraocular lens; LP, light perception; SF6, sulfur hexafluoride.

*Visual acuity refers to the affected eye.

---

Table 2. Characteristics of the Patients

<table>
<thead>
<tr>
<th>Patient No./ Sex/GA, wk</th>
<th>Birth Weight, g</th>
<th>Refractive Error, D</th>
<th>Age at Surgery, y Preoperative</th>
<th>Visual Acuity Preoperative</th>
<th>Visual Acuity Postoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/M/26</td>
<td>810</td>
<td>–2.50</td>
<td>9.9 HM</td>
<td>20/25</td>
<td>Vitrectomy, SF6</td>
</tr>
<tr>
<td>2/M/29</td>
<td>970</td>
<td>–12.25</td>
<td>11.6 LP</td>
<td>20/60</td>
<td>Vitrectomy, silicone</td>
</tr>
<tr>
<td>3/F/28</td>
<td>1000</td>
<td>–17.63</td>
<td>13.3 20/200</td>
<td>20/40</td>
<td>Vitrectomy, SF6</td>
</tr>
<tr>
<td>Left eye</td>
<td></td>
<td>–15.50</td>
<td>15.1 20/200</td>
<td>20/40</td>
<td>Vitrectomy, SF6</td>
</tr>
<tr>
<td>Right eye</td>
<td></td>
<td>–15.50</td>
<td>15.0 20/200</td>
<td>20/25</td>
<td>Vitrectomy, SF6</td>
</tr>
<tr>
<td>5/M/27</td>
<td>1475</td>
<td>–8.50</td>
<td>15.4 20/600</td>
<td>LP</td>
<td>Vitrectomy, silicone</td>
</tr>
<tr>
<td>6/M/26</td>
<td>1020</td>
<td>–6.00</td>
<td>17.9 HM 20/800</td>
<td>Vitrectomy, silicone, lensectomy</td>
<td></td>
</tr>
<tr>
<td>7/F/30</td>
<td>1450</td>
<td>–3.63</td>
<td>25.8 20/40</td>
<td>20/25</td>
<td>Vitrectomy, SF6</td>
</tr>
<tr>
<td>8/M/28</td>
<td>1073</td>
<td>0.75</td>
<td>36.1 20/700</td>
<td>20/80</td>
<td>Vitrectomy, encircling band, SF6</td>
</tr>
<tr>
<td>9/F/28</td>
<td>1300</td>
<td>0.00</td>
<td>39.3 20/25</td>
<td>20/80</td>
<td>Vitrectomy, SF6</td>
</tr>
<tr>
<td>10/F/30</td>
<td>1150</td>
<td>–13.75</td>
<td>42.4 20/300</td>
<td>20/700</td>
<td>Vitrectomy, silicone, IOL removal</td>
</tr>
</tbody>
</table>

Abbreviations: D, diopters, ECCE, extracapsular cataract extraction; GA, gestational age; HM, hand movement; IOL, intraocular lens; LP, light perception; SF6, sulfur hexafluoride.

*Visual acuity refers to the affected eye.

Table 3. Initial Retinal Findings

<table>
<thead>
<tr>
<th>Findings</th>
<th>No. of Eyes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cicatrical changes but peripheral retinal changes*</td>
<td>1</td>
</tr>
<tr>
<td>Abnormal retinal vessel angle and macular ectopia</td>
<td>5</td>
</tr>
<tr>
<td>Retinal fold</td>
<td>1</td>
</tr>
<tr>
<td>Tractional RD</td>
<td>3</td>
</tr>
<tr>
<td>Peripheral scars after cryotherapy for acute phase of ROP</td>
<td>1</td>
</tr>
</tbody>
</table>

Abbreviations: RD, retinal detachment; ROP, retinopathy of prematurity.

*Peripheral retinal changes refer to latticelike degeneration or an avascular peripheral retina.

---

Distribution of visual acuity in the affected eye preoperatively and at the last follow-up visit.

The good results of some of these studies may be owing to the exclusion of inoperable eyes with vitreoretinal traction. Harris described 52 eyes with late RD and a cicatricial stage of ROP; 13 of these eyes were considered inoperable because of severe vitreoretinal involvement.

Sneed et al treated 16 eyes with late-onset RD associated with regressed ROP. All of their patients demonstrated temporal straightening of the retinal blood vessels and diffuse retinal pigment epithelial clumping. The
Retinal detachment is a possible complication of regressed ROP. It is uncertain whether retinal breaks and RD in regressed ROP are secondary to ongoing changes of ROP, to abnormal vitreoretinal interface changes caused by ROP, or to other unrecognized factors. Tasman described that as a result of vitreous traction, retinal vessels sometimes pulled into the vitreous cavity because of shrinking vitreous gel. He implied that temporal vitreous traction on the retina is the rule and proposed that this occurs because the temporal retina, even in full-term infants, is the last area to become vascularized and is thus more sensitive to changes in oxygen concentration. That vitreous gel may partially liquefy and form synecesis cavities may also be important. Between these cavities, the vitreous fibrils condense and may insert into the retina. Thirteen years later, Sebag described age-related differences in the human vitreoretinal interface. He found that in 40% of eyes of 15 years 20 years younger, adhesion between the internal limiting membrane and the posterior vitreous cortex was stronger than that of the Muller cells. Consequently, in his study of dissection of the vitreous from the retina, the inner portions of the Muller cells tore away from the retina and adhered to the internal limiting membrane—vitreous cortex complex. If the process of liquefying occurs without adequate dehiscence between the vitreous cortex and the internal limiting membrane, traction will be exerted at sites of persistent adhesion and may cause retinal tears. Sebag presumed that this may be the reason for severity in patients with high myopia and vitreous degeneration in whom liquefaction is advanced but there is no vitreoretinal dehiscence.

In our study, 6 eyes of 7 patients younger than 20 years were highly (6 D) myopic. In some cases, a strongly adherent vitreous cortex was noted during surgery. Vitreoretinal changes due to high myopia or premature birth may cause RD. Abnormal vitreoretinal traction may be another factor in the development of RD.

Machemer obtained specimens for histological examination during vitrectomy. The membranes in the vitreous cavity were collagen rich and contained cells with glial characteristics. He assumed that chronic exudation from vascular abnormalities was the stimulus for this proliferation. In addition, high myopia and frequent lattice-like changes placed these patients at a higher risk for RD.

We recommend that patients with premature birth should be informed about the possibility and symptoms of RD. Those born prematurely, with or without significant fundus changes, should be monitored regularly for retinal complications. When RD occurs, primary vitrectomy without scleral buckling can be used for successful reattachment of the retina.