Objective: To evaluate the postoperative changes in astigmatism in the pseudophakic eyes of children who underwent 1 of 3 different types of surgical incisions for congenital cataract extraction with intraocular lens implantation, and in whom astigmatism of at least 3 diopters (D) was recorded 1 week after the operation.

Methods: We retrospectively reviewed the medical records of all the children in our department who had undergone surgery for nontraumatic cataract between 1992 and 2001. Cataract surgery with intraocular lens implantation was performed using 1 of 3 types of surgical incisions: a limbal incision, a scleral tunnel, or a clear corneal incision allowing the use of a foldable intraocular lens. In 28 children (32 eyes) aged 2 months to 11 years (mean±SD, 4.7±3.4 years), astigmatism of 3D or more was found when assessed 1 week after surgery. The refraction was measured and recorded again 3 months and 5 months after surgery. The paired t test was used to compare the outcome variables.

Main Outcome Measures: Refractive error 1 week, 3 months, and 5 months after surgery.

Results: Mean±SD astigmatism 1 week postoperatively was 5.8±2.2 D, 5.1±2.1 D, and 4.0±1.3 D in groups 1, 2, and 3, respectively. Thereafter, the astigmatic component of the refractive error underwent a spontaneous decline, reaching mean±SD values of 0.9±1.0 D, 1.6±1.6 D, and 1.0±0.8 D, respectively, in the 3 groups 5 months after the operation. The difference between the mean values at 1 week and at 5 months in each group was statistically significant (P<.001 in group 1; P=.01 in group 2; and P<.001 in group 3).

Conclusion: Children who underwent extraction of congenital cataract and intraocular lens implantation by different surgical techniques showed a significant spontaneous reduction in astigmatism postoperatively.

Arch Ophthalmol. 2004;122:695-697

Recent reports have documented the finding of spontaneous regression in astigmatism after cataract surgery in children.11,12 These studies reported the changes in astigmatism that occurred without suture removal after cataract surgery and intraocular lens (IOL) implantation in children with cataract.

METHODS

The medical records of all 73 children (112 eyes) who underwent surgery for congenital cataract between 1992 and 2001 were reviewed. All eyes found to have astigmatism of at least 3 D one week after surgery were included in the study. There were no other ocular or systemic abnormalities in the study population.

All patients had undergone extracapsular cataract extraction and IOL implantation. Three types of surgical incisions were used. The following procedure was common to all techniques. Two paracentesis ports were opened at the limbus at the 2- and 10-o'clock positions. An anterior chamber maintainer (Vis-
When examined 1 week after surgery, 32 eyes (28 children [14 boys and 14 girls]) had astigmatic errors of 3 D or more and were therefore included in the study. In 4 patients (1 patient each in groups 1 and 3, and 2 patients in group 2), both eyes were operated on with the same technique. In these cases, the 2 eyes were averaged for the analyses. Thus, 28 cases were included in the study. The children were aged 2 months to 11 years (mean ± SD, 4.7 ± 3.4 years). Mean ± SD ages in the 3 groups were 6.8 ± 3.6, 3.2 ± 2.8, and 3.5 ± 2.7 years, respectively. In each case, both the surgical and the postoperative course were uneventful, and there were no complications.

The Table presents the mean values and ranges of astigmatism after surgery in the different groups. The eyes in all 3 groups showed a decline in mean astigmatism with time. In all 3 groups, the mean change in astigmatism was greater during the first 3 postoperative months than during the following 2 months (Table). The observed changes in astigmatism between 1 week and 5 months after surgery were statistically significant in all 3 groups (P < .001 in group 1; P = .01 in group 2; and P < .001 in group 3).

The immediate postoperative astigmatism and its subsequent changes are affected by factors such as the surgical technique, type of suture used, and experience of the surgeon.1-3,13 Cataract surgery in children, with or without anterior vitrectomy, can be done through small limbal incisions.13 For IOL implantation, the incision must be enlarged in accordance with the diameter of the lens to be implanted. Postoperative astigmatism may be affected by the width of the incision constructed in the sclera and the need to suture this cut in children. The relatively small astig-
matism reported after scleral tunnel in other studies may have been attributable to sutureless surgery.13-17

In the present study, postoperative astigmatism showed a spontaneous decrease during the period between 1 week and 5 months after surgery, with most of this decrease seen during the first 3 months. The decline in astigmatism occurred in all patients regardless of the mode of surgical incision. Astigmatism declined in groups 1, 2, and 3 from 5.8 D, 5.1 D, and 4.0 D, respectively, 1 week after surgery to 0.9 D, 1.6 D, and 1.0 D, respectively, 5 months after surgery. Brown et al12 recently reported spontaneous relaxation of postoperative astigmatism in children after lens implantation through a 6.25-mm scleral wound. In that study, the mean astigmatism was 6.71 D at 1 to 1.5 days after surgery and 1.93 D at 31 to 45 days. The authors concluded that surgeons should not hesitate to secure scleral wounds meticulously in children because of fear of a permanent undesirable refractive outcome.

In our patients, the astigmatism decreased more rapidly, on average, during the first 3 months after the operation than during the following 2 months. This decline in astigmatism with time was observed in all 3 groups. Similarly, on average, during the first 3 months after the operation, the desired refractive outcome.

In the present study, postoperative astigmatism is important, especially in children, because of its adverse effect on vision development and the risk of amblyopia.20 In adults, a few months of delay in correcting the refractive error does not affect the final visual acuity, whereas in children, the optical refraction must be precisely corrected as soon as possible. Accordingly, the refractive error in all of our patients was corrected 1 month after surgery, and any further changes in astigmatism were promptly attended to by changes in the refractive correction. On the other hand, whereas postoperative surgical astigmatism in adults can be corrected by removal of 1 or more sutures in a simple office procedure,6,31 in children this procedure usually requires general anesthesia.

Mild spontaneous regression of postoperative astigmatism has been described in adults. Without suture cutting, mean changes of only 0.5 D3 and 1.25 D3 were reported during the first year after cataract surgery. In our present series of pediatric patients, by 5 months after surgery there was a spontaneous average decline in astigmatism of 4.9 D, 3.5 D, and 3.0 D in groups 1, 2, and 3, respectively (Table). At least 2 factors might have contributed to this marked spontaneous regression. First, the ocular tissues in children exhibit a high degree of elasticity. In adults, wound compression caused by the sutures does not change across time, whereas in children, because of the elasticity of the cornea and sclera, the tissue tension may spread evenly to neighboring areas and reduce the amount of astigmatism. Second, growth of the globe in children (but not in adults) continues under constant centrifugal intraocular pressure and results in a more spherical growth of the eye, thereby diminishing the amount of astigmatism. This factor may be particularly important in young children.

In adults, suture removal is recommended as a way to correct postoperative astigmatism. The findings of the present study strongly suggest that removal of sutures in children is not required, because the astigmatism regresses spontaneously a few months after surgery. This would eliminate the need for the general anesthesia that is usually necessary for suture removal in children.

Submitted for publication April 3, 2003; final revision received August 12, 2003; accepted August 25, 2003.

This study was supported by a grant from the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.

Corresponding author: Abraham Spierer, MD, Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer 52621, Israel (e-mail: spierera@post.tau.ac.il).

REFERENCES