ial or syndrome association. There is a male-female predominance of 2:1. It has been described as freely mobile, well circumscribed, and subcuticular.

Although the clinical characteristics of fibrous hamartoma have been variably reported, it has unique microscopic features. All prior cases consistently report well-defined traversing bundles of dense fibrocollagenous tissue, immature loose-textured mesenchyme, and increased areas of interspersed mature adipose tissue. It has been postulated that the mesenchymal tissue has vaso-proliferative capability, which may explain the presence of an angioma involving the adjacent conjunctiva in this patient. In our case, the overall histopathologic pattern, with the focal basaloid budding overlying a circumscribed nodule, suggests the diagnosis of dermatofibroma. However, the elements making up the tumor are much more characteristic of a fibrous hamartoma. Diffuse immunoreactivity for CD34 is suggestive of a solitary fibrous tumor. The negative reactivity to factor XIIIa' and muscle-specific actin rules out dermatofibroma and confirms the diagnosis of fibrous hamartoma of infancy. The basaloid hyperplasia overlying the fibrous hamartoma can be explained on the basis of activation of keratinocytes. The presence of primitive mesenchymal cells in the underlying nodule may mediate the release of cytokines and growth factors that stimulate the keratinocytes. This leads to a cascade of events that may be responsible for the basaloid budding of the epidermis. A similar mechanism has been described in dermatofibroma.

Other rare entities in the differential diagnosis include myofiromma, lipofibromatosis, and calcifying aponeuretic fibroma. Myofirommas are found in the head and neck region and have light-staining areas and dark, more hemangiopericytoma-like staining areas histologically. The negative reactivity to muscle-specific actin in our specimen rules out myofiromma. Lipofibromatosis consists of abundant adipose tissue traversed by bundles of fibroblasts, without immature mesenchyme. Calcifying aponeuretic fibroma is found interspersed with fat in infants and is composed of calcific areas surrounded by lymphoid collagen and fibroblasts.

The natural history of fibrous hamartoma suggests initial growth that slows with older age. No malignant degeneration or spontaneous regression has been documented. Local surgical excision is successful in most cases, with recurrent growth occasionally noted after incomplete excision.

Fibrous hamartoma is a rare, benign entity that occurs in infants and young children. It rarely involves the face. The lesion can be successfully excised, and its unique histopathologic characteristics are valuable in confirming the diagnosis.

Yasmin S. Bradfield, MD
Amol Kulkarni, MD
Heather D. Potter, MD
Thomas Warner, MD
Daniel M. Albert, MD, MS

Correspondence: Dr Bradfield, University of Wisconsin, Department of Ophthalmology and Visual Sciences, 2870 University Ave, Suite 206, Madison, WI 53705 (ysbradfield@ophth.wisc.edu).

Financial Disclosure: None reported.

9. Han KH, Huh CH, Cho KH. Proliferation and differentiation of the keratinocytes in hyperplastic epidermis overlying dermatofibromatous me-

Transient Homonymous Hemianopia and Positive Visual Phenomena in Patients With Nonketotic Hyperglycemia

Homonymous hemianopic visual field defects usually result from structural processes affecting retrochiasmal visual pathways. Cranial magnetic resonance imaging typically identifies the responsible lesions. Etiologies of homonymous hemianopias and normal neuroimaging include the Heidenhain variant of Creutzfeldt-Jakob disease, the visual variant of Alzheimer disease, occipital or global ischemia/hypoxia, MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), anemia, migraine, occipital seizures, functional illness, and nonketotic hyperglycemia (NKH). Herein, we report a case of transient homonymous hemianopia and positive visual symptoms caused by NKH and review the literature on this rare phenomenon.

Report of a Case. A 68-year-old man had well-controlled type 2 diabetes mellitus (blood glucose levels consistently 90-130 mg/dL [5.00-7.22 mmol/L]). His physician changed his medication to insulin glargine in early December 2004, which resulted in poorly controlled blood glucose levels that were consistently more than 600 mg/dL (33.31 mmol/L) until early January. He developed intermittent photopsias, visual hallucinations, and “distorted” vision OU in the middle of December 2004. He denied having any other visual or neurologic symptoms.

Visual acuities were 20/50 OD and 20/40 OS. Automated perimetry revealed a complete left homonymous hemianopia (Figure 1). The rest of his neuro-ophthalmic examination findings were unremarkable except for nuclear sclerosis in the right eye and scleeral buckle in the left.
Cranial magnetic resonance imaging (including diffusion-weighted imaging, fluid attenuated inversion recovery, and gadolinium) and single-photon emission computed tomography scans showed normal results. Neuropsychological test results were unremarkable. His blood glucose levels improved to 100 to 150 mg/dL (5.55-8.33 mmol/L) and the hallucinations resolved 1 week later. At 2-week follow-up, automated perimetry showed resolution of the homonymous hemianopia (Figure 2). Electroencephalogram was not obtained given the prompt resolution of symptoms after blood glucose levels improved.

Comment. “Stroke mimics” are unusual manifestations of nonvascular conditions that may resemble acute stroke symptoms and may result from metabolic, psychiatric, and central nervous system disorders (seizure, complicated migraine, tumor, myasthenia, and multiple sclerosis). Metabolic disorders represent a small subgroup (0.7% of mimics) of potentially treatable causes of acute focal neurological deficits. They include hypoglycemia, hyperglycemia, hyponatremia, hypoxia, uremia, and hepatic encephalopathy.

Seizures have been reported in 25% of patients with NKH; published reports emphasize partial motor seizures almost exclusively. However, other clinical manifestations include hallucinations, myotonic twitches, nystagmus, tonic eye deviations, hemiparesis, hemisensory defect, aphasia, and homonymous hemianopia.

Figure 1. Thirty degree Humphrey visual fields of left eye (A) and right eye (B). Note a dense left homonymous hemianopia is present during the period of uncontrolled hyperglycemia.

Figure 2. Thirty degree Humphrey visual fields of left eye (A) and right eye (B). Note resolution of the visual field defect after correction of hyperglycemia.
The patient herein developed transient homonymous hemianopia and positive visual phenomena secondary to NKH. We found only 7 other cases in the literature (Table). The average blood glucose level was 538 mg/dL (29.86 mmol/L) with a minimum of 343 mg/dL (19.04 mmol/L). There were 5 men and 3 women. All but 1 were older than 55 years of age. Half of the cases experienced visual symptoms only. The symptoms all resolved within days of controlling the blood glucose level. Although not completely understood, the pathophysiologic mechanism in some cases may occur from underlying seizure activity, as evidenced by electroencephalogram abnormalities. When glucose concentration rises, water is osmotically attracted from the intracellular fluid space, resulting in cellular dehydration, alteration of enzyme activity, and subsequent neuronal dysfunction.3,4 Additionally, most patients with focal seizures in NKH are elderly and may have cerebral areas with borderline vascular supply. Given the stresses of hyperosmolality, incipient vascular ischemia in an area of borderline perfusion leads to cellular anoxia, clinically manifested in focal neurological deficits and focal seizures. This interaction between an area of potential dysfunction and the epileptogenic effect of hypertonic glucose solutions has been experimentally demonstrated.3,4 In keeping with this hypothesis, Maccario4 reported a recurrence of stereotopic neurological symptoms with hyperglycemia. In conclusion, NKH should be considered in patients with homonymous hemianopia, positive visual phenomena, and negative neuroimaging studies. The mechanism is not completely understood but may represent ictal or postictal inhibition.

Table. Patients With Transient Homonymous Hemianopia and Positive Visual Phenomena Secondary to Nonketotic Hyperglycemia

<table>
<thead>
<tr>
<th>Source</th>
<th>Sex/Age, y</th>
<th>Blood Glucose, mg/dL</th>
<th>Symptoms</th>
<th>Imaging of Brain</th>
<th>EEG</th>
<th>SPECT of Brain</th>
<th>Duration</th>
<th>Resolution*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taban et al (present study)</td>
<td>M/68</td>
<td>>600</td>
<td>Visual hallucinations, illusions</td>
<td>MRI: microischemic deep white matter changes</td>
<td>NA</td>
<td>Normal</td>
<td>6 weeks</td>
<td>Days</td>
</tr>
<tr>
<td>Freedman and Polepalle</td>
<td>F/72</td>
<td>343</td>
<td>Visual hallucinations</td>
<td>CT: normal</td>
<td>NA</td>
<td>NA</td>
<td>Several weeks</td>
<td>Several days</td>
</tr>
<tr>
<td>Harden et al (1991)</td>
<td>M/28</td>
<td>371</td>
<td>Visual hallucinations, focal seizures (left gaze deviation)</td>
<td>CT: normal</td>
<td>NA</td>
<td>NA</td>
<td>2 weeks</td>
<td>Several days</td>
</tr>
<tr>
<td>Taban et al (present study)</td>
<td>F/67</td>
<td>452</td>
<td>Photopsias in hemianopic defect</td>
<td>CT: old lacunar infarcts</td>
<td>NA</td>
<td>NA</td>
<td>2 weeks</td>
<td>Several days</td>
</tr>
<tr>
<td>Johnson and Loge (1988)</td>
<td>M/57</td>
<td>609</td>
<td>Visual hallucinations, palinopia, motor seizures</td>
<td>CT: normal</td>
<td>NA</td>
<td>NA</td>
<td>5 days</td>
<td>2 days</td>
</tr>
<tr>
<td>Berkovic et al (1984)</td>
<td>F/80</td>
<td>479</td>
<td>Expressive dysphagia, right hand weakness, finger agnosia, acalculia, agrafia</td>
<td>Continuous high-voltage slow waves in left temporal region</td>
<td>NA</td>
<td>NA</td>
<td>10 days</td>
<td>2-4 days</td>
</tr>
<tr>
<td>Maccario (1968)</td>
<td>M/73</td>
<td>750</td>
<td>Visual hallucinations, right hemiparesis, stupor, seizures</td>
<td>Unknown</td>
<td>NA</td>
<td>NA > 1 week</td>
<td>With recurrence</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CT, computed tomography; EEG, electroencephalogram; MRI, magnetic resonance imaging; NA, not applicable; SPECT, single-photon emission computed tomography.

SI conversion factors: To convert glucose to mmol/L, multiply by 0.05551.

*Resolution refers to time to normalization of homonymous hemianopia field defect after blood glucose control.

Correspondence: Dr Lee, Department of Ophthalmology, University of Minnesota, 420 Delaware St, MMC 493, Minneapolis, MN 55455 (leex2679@umn.edu).

Financial Disclosure: None reported.