noma cells in the deep portion of the tumor that were possibly beyond the kill depth of TTT. Peripapillary tumors and those within 1.5 mm of the optic disc were excluded from consideration of treatment with transscleral cryotherapy. Because of the disparity between the small size of the optic disc and the larger size of the extrascleral portion of the optic nerve, it was concluded that cryotherapy could not properly treat the episcleral tissue behind a tumor located in the peripapillary region without injuring the optic nerve. My observation that primary treatment of even a small choroidal melanoma (<3.0-mm thickness) could be followed by severe intravitreous hemorrhage led to the decision to apply the cryotherapy only after a post-TTT interval of 3 months. My observations of tumors treated with TTT verified that 3 months after TTT both the vascularity of the tumor and the tumor bulk were greatly reduced. The reduced tumor bulk would enable the cryotherapy to be more capable of successfully treating the entire thickness of the residual tumor, and the reduced vascularity would decrease the likelihood of causing hemorrhage.

In the present series, the development of 2 recurrences in 5 cases, despite combination therapy, was disappointing. Clearly this combination therapy will not always be successful in preventing tumor recurrences. One might argue that the depth and completeness of the freezes with the cryotherapy applications were inadequate. However, the freezes were easy to observe with indirect ophthalmoscopy; in each case, the treatment appeared to adequately and completely cover the perimeter of the tumor base. The observed freeze from the cryotherapy application extended approximately 1 mm beyond the perimeter of the TTT, which, in turn, was delivered to encompass not only the tumor base but also 1 mm of clinically normal-appearing tissue around the tumor margin.

The failure of this combined treatment may be looked on as a reason to discontinue the use of cryotherapy as an adjunctive treatment. However, the known effectiveness of primary cryotherapy in the treatment of some small melanocytic tumors and the effective management of an edge recurrence with cryotherapy after an initial treatment with TTT as in an unreported case, as well as the potential value in preventing extrascleral extensions, argue for continuing to explore the use of cryotherapy as an adjunctive treatment in selected cases of small melanomas. Of the 2 tumors that developed recurrences after the use of combined therapy with TTT and cryopexy, effective management appears to have been accomplished with additional TTT in 1 tumor. Brachytherapy was used to treat the other tumor recurrence. This was followed by local control of the tumor for several years, but the treatments failed to prevent metastases. Although meaningful survival statistics cannot be drawn from this small series, the development of metastatic melanoma in 1 of the 2 patients with tumor recurrence serves to remind us that a trend toward reduced survival has been demonstrated following local tumor failure after brachytherapy. It remains a goal to eliminate tumor recurrences. One eye developed an epiretinal membrane with resulting visual impairment despite successful pars plana vitrectomy and membrane peeling. Although epiretinal membrane formation can be seen after TTT alone, cryopexy has also been shown to produce epiretinal membrane, especially when used with heavy applications as in this case series. It remains uncertain whether the epiretinal membrane in this series was induced from TTT, cryotherapy, or both.

Dennis M. Robertson, MD

Correspondence: Dr Robertson, Department of Ophthalmology, Mayo Clinic, 200 First St SW, Rochester, MN 55905.

Financial Disclosure: None reported.

Funding/Sponsor: This study was supported in part by Research to Prevent Blindness, Inc.

Functional Use of Hyaluronic Acid Gel in Lower Eyelid Retraction

Hyaluronic acid gel is a nonanimal, naturally occurring polysaccharide found in the extracellular matrix of connective tissue and is well suited as a soft-tissue filler in cosmetic surgery. Cross-linked hyaluronic acid gel is identical in composition across species with a low risk of allergic reaction. It is a transparent, viscous, injectable tissue filler that can be found in varying particle sizes and whose effect lasts up to 9 months.

Lower eyelid retraction with exposure keratopathy and lagophthalmos is a challenging clinical problem. While symptoms of corneal exposure can be medically managed, traditional long-term treatments generally involve surgical intervention. We used hyaluronic acid gel as a minimally invasive nonsurgical alternative to treat secondary lower eyelid retraction causing corneal exposure and keratopathy in 5 patients with varying etiologies. This treatment formed part of the patients’ clinical management and did not require institutional review board approval.

Report of Cases. Injection location and volume were determined in the preoperative visit. Preinjection and postinjection photographs were taken with standard position and lighting by the same surgeon with a Nikon Coolpix 990 camera (Nikon, Melville, New York). Each injection was done by the
same surgeon under local topical anesthetic using a 23-gauge and one-quarter–inch needle. We injected 0.2 to 2.0 mL of hyaluronic acid gel anterior to the orbital rim in the preperiosteal plane deep to the orbicularis oculi muscle to avoid visible irregular deposition and discoloration from the filler. Small amounts of hyaluronic acid gel were delivered via multiple injections, each in a thread-like manner with constant pressure to create volume (Figure 1). We aimed to inject a larger amount of hyaluronic acid gel posterior to the orbicularis oculi muscle to obtain a more marked functional use in 5 consecutive patients with secondary lower eyelid retraction. After the injection, the area was gently massaged to smooth any areas of irregularity. The patient was discharged after desirable filling of the contour and lid height were achieved. There were no postinjection instructions or restrictions.

Photographic documentation of each patient preinjection and postinjection was used to calculate the change in inferior scleral show. Using Adobe Photoshop version CS2 (Adobe, San Jose, California), the distance of the lower lid margin to the inferior corneal limbus was compared with the horizontal corneal diameter of the same patient. Actual scleral show measurements were calculated in millimeters based on the assumption that the horizontal corneal diameter was 11.5 mm.

Eight lower eyelids (4 right and 4 left) of 5 patients (2 men, 3 women; average age of 56 years) were injected. Causes of lower eyelid retraction included lower eyelid blepharoplasty (4 patients) and lower motor neuron facial palsy (1 patient). All patients had undergone other periorbital and/or orbital surgeries and complained of symptoms associated with exposure keratopathy, including discomfort, foreign body sensation, and corneal keratopathy.

The average volume of hyaluronic acid gel used was 0.925 mL in the right lower eyelid and 0.824 mL in the left lower eyelid. This volume was tailored to the individual and based on clinical need. Four patients received Restylane (Q-Med AB, Uppsala, Sweden) and 1 patient received Perlane (Q-Med AB).

Hyaluronic acid gel injections raised the height of the lower eyelids, improved eyelid closure, and reduced symptoms of exposure keratitis. Preinjection and postinjection images are
injury to the globe with the needle.3

vision from embolization or direct
duce reactions including loss of
duction. These are often transient and
verse reactions, which include pain,
doloration of the skin, asymme-
erythem. These are often transient and
ized. However, simple proce-
dures, such as the injection of der-
filers, have the potential to in-
duce reactions including loss of
ion from embolization or direct
jury to the globe with the needle.3

Depth of injection is critical
to good volume augmentation with
esthetic success. To prevent a
lumpy result, larger particle fillers
are generally injected in deeper
planes of tissue. Patients with per-
sistent fullness (improper volume)
or superficial injection of the hya-
uronic acid (improper placement of
ller) can be locally injected with 10
to 20 units of hyaluronidase. The
fullness or contour abnormality is re-
duced immediately and the action of
yaluronidase works rapidly for 24

Conclusions. Hyaluronic acid gel is
an effective, minimally invasive treat-
ment for lower eyelid retraction.
While follow-up was short-term in
this study, the longevity of hya-
uronic acid gel in these patients will
vary in long-term follow-up. Pa-
tient satisfaction was high, with im-
provement of exposure symptoms.
In the same way that botulinum
toxin is used to lower the upper eye-
idd by temporary chemodenerva-
tion of the levator muscle, hyal-
uronic acid gel can raise the lower
eyelid temporarily. This small case
series illustrates the use of hya-
uronic acid gel injection in the treat-
ment of lower eyelid retraction and
should be considered in patients
where surgery is not desirable or
whose underlying condition may
move such that surgical interven-
tion is not appropriate.

Maryam Zamani, MD
Sri Thyagarajan, MRCoPhth, BS
Jane M. Olver, FRCS, FRCoPhth

Correspondence: Dr Olver, Oculo-
plastic and Orbital Service, The
Western Eye Hospital, Marylebone
Road, London NW1 5YE, England
(janeolver@aol.com).

Financial Disclosure: None re-
ported.

1. McCracken MS, Khan JA, Wule AE, et al. Hyal-
uronic acid gel (Restylane) filler for facial rhytids:
lessons learned from American Society of Oph-
thalmic Plastic and Reconstructive Surgery mem-
ber treatment of 286 patients. Ophthal Plast Re-
2. Johl SS, Burgett RA. Fermal filler agents: a prac-
tical review. Curr Opin Ophthalmol. 2006;17
3. Goldberg RA, Fiaschetti D. Filling the perior-
bital hollows with hyaluronic acid get: initial ex-
perience with 244 injections. Ophthal Plast Re-
4. Steinsapir KD, Steinsapir SM. Deep-fill hyal-
uronic acid for the temporary treatment of naso-
jugal groove: a report of 303 consecutive
treatments. Ophthal Plast Reconstr Surg. 2006;
22(5):344-348.