progressive worsening and posterior segment extension. On examination, his visual acuity was light perception OD 10 days after surgery. His visual acuity remained light perception OD 10 days after surgery. His visual acuity remained light perception OD 10 days after surgery.

Comment. Endogenous endophthalmitis is a potentially devastating condition characterized by intraocular infection by organisms that access the eye through the bloodstream. Endogenous endophthalmitis accounts for 2% to 6% of all cases of endophthalmitis. In a recent review of cases of endogenous endophthalmitis, GBS was the causative agent in about 5% of cases. Group B Streptococcus is most commonly causes infection in neonates and pregnant women, although in the last 2 decades there has been a 2- to 4-fold increase in the incidence of invasive GBS in nonpregnant adults. The most common identifiable sources of GBS are skin or soft-tissue infections, urinary tract infections, pneumonia, bone and joint infections, and endocarditis. In a review of cases of GBS endogenous endophthalmitis, most had ocular involvement within 5 days of onset of sepsis, and ocular infection was not the initial manifestation of sepsis in any patient. The visual prognosis in GBS endophthalmitis is poor, with 76% of cases resulting in visual acuity of light perception or worse.

Our case is unusual because GBS endophthalmitis was the presenting factor leading to the diagnosis of precursor T-cell lymphoblastic leukemia. This case exemplifies the importance of having a high index of suspicion for endogenous endophthalmitis in uveitis cases with a rapidly progressive course that do not respond to standard therapy with corticosteroids. It also shows the important role an ophthalmologist can play in diagnosing serious underlying medical conditions.

Cystic Solitary Fibrous Tumor of the Orbit

Solitary fibrous tumor (SFT) is a rare spindle cell tumor of mesenchymal origin, most commonly arising from the pleura but also known to occur in extrapleural sites. Orbital SFT was first described in 1994, and since then approximately 70 orbital cases have been published in the literature. Virtually all reported cases of orbital SFT to date were solid tumors. We report the first case to our knowledge of an entirely cystic SFT arising in the orbit.

Figure. Bone marrow biopsy showing diffuse sheets of lymphoid cells involving about 95% of marrow cellularity. The lymphoid cells are small to medium-sized monomorphic lymphoblasts (hematoxylin-eosin, original magnification ×40).
Report of a Case. A 45-year-old woman had painless right upper eyelid puffiness for 1 year, vision-blocking ptosis on the right for 6 months, diplopia on left gaze, epiphora, and crusting. On examination, visual acuity was 20/20 OU. There was diplopia at 60° of left gaze. The right eye was dystopic 2 mm laterally and 1 to 2 mm inferiorly with 1 mm of proptosis (Figure 1). An ill-defined softness was palpated superomedially in the right orbit.

Orbital computed tomography revealed a well-defined 2.3 \times 1.1 \times 1.9-cm cystic mass in the medial aspect of the right orbit with central rim-enhancing fluid hypodensity, central septations, and a 3-mm nodule medially (Figure 1). There was subtle remodeling of the lamina papyracea.

The patient underwent transcaruncular orbitotomy. A 1.8 \times 1.1 \times 1.5-cm cystic, translucent, blue-gray mass with small amounts of adherent yellow-tan tissue was transected from a thin stalk at its posterior-superior pole. On opening the wall of the mass, prompt deflation with copious straw-colored fluid was noted.

The tumor was pseudoencapsulated, was circumscribed, and had multiple septa (Figure 2). Microscopically, the capsule and septa exhibited features typical of SFT.2,4 There were bland spindle cells haphazardly arranged, without a tendency to form bundles. Some regions were highly cellular, while other regions were hypocellular with abundant matrix and deposition of thick collagen fibers (Figure 2). There was characteristic perivascular fibrosis, particularly in hypocellular areas. Vascularity was rich with dilated vessels and small capillary-sized vessels. Pleomorphism, tumor giant cells, and mitotic activity were absent. The tumor cells formed and lined the septa, indicating that the tumor was really a pseudocyst. The tumor cells also invaded through the pseudocapsule, reaching the resection margin multifocally. The tumor cells stained positively for immunoreactive vimentin, CD99, CD34, and Bcl-2 (Figure 2). Fibroblasts, including those forming the pseudocapsule, did not stain with CD99, CD34, or Bcl-2. Tumor cells showed no S-100 protein, glial fibrillary acidic protein, epithelial membrane antigen, neurofilament, smooth muscle–specific actin, or desmin immunoreactivity.

Postoperatively, the patient experienced complete resolution of her eyelid swelling, ptosis, diplopia, dystopia, epiphora, and crusting.

Figure 1. Computed tomography and appearance of cystic orbital solitary fibrous tumor. A, Axial computed tomography showing a septate, cystic mass of the anteromedial right orbit. B, Preoperative photograph showing right inferolateral dystopia, upper eyelid swelling, and ptosis. C, Symmetric cosmetic appearance after tumor excision.

Figure 2. Histopathology of cystic orbital solitary fibrous tumor. A, Solitary fibrous tumor with a pseudocapsule and septa (hematoxylin-eosin, original magnification \times 20). B, Spindle cells in hypocellular and hypercellular areas and perivascular fibrosis (hematoxylin-eosin, original magnification \times 300). C, CD99-immunopositive tumor cells lining the septal surface (asterisk) and permeating the pseudocapsule (original magnification \times 100). D, CD34 immunopositivity (original magnification \times 400). E, Bcl-2–immunoreactive cells in and along the septal surfaces (original magnification \times 400).
Comment. Orbital SFT typically causes insidious, painless proptosis developing over an average of 2 years in patients averaging 40-years-old (age range, 9-76 years). Treatment consists of excision of the circumscribed growth, but local recurrences due to incomplete excision can occur. In our case, microscopic invasion through the pseudocapsule may theoretically permit recurrence. A case of malignant orbital SFT also has been reported.

There is a single report of an orbital SFT that was mostly solid with some cystic components. Entirely cystic SFT has been described in other extrapleural locations but never in the orbit. To our knowledge, our case is the first reported case of an entirely cystic SFT arising from the orbit. The fact that tumor cells rather than endothelium lined the septa probably contributed to the pseudocystic fluid accumulation.

The main differential diagnosis in this case was cystic schwannoma and giant cell angiofibroma. The tumor was negative for S-100 protein and neurofilament stains, and there were no giant cells. These findings support a diagnosis of SFT. We recommend that SFT be considered in the differential diagnosis of cystic orbital lesions.

Jason M. Feuerman, BS
Andrew Flint, MD
Víctor M. Elner, MD, PhD

Author Affiliations: Kellogg Eye Center (Mr Feuerman and Dr Elner) and Department of Pathology (Drs Flint and Elner), University of Michigan, Ann Arbor.

Correspondence: Dr Elner, Kellogg Eye Center, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105 (velner@med.umich.edu).

Financial Disclosure: None reported.

Funding/Support: This work was supported by grants EY09441 and EY007003 from the National Institutes of Health.


COMMENTS AND OPINIONS

Ophthalmic Pathology and Ophthalmology

I congratulate Drs Albert and Chévez-Barrios1,2 for the August 2009 joint issues of Archives of Ophthalmology1 and Archives of Pathology and Laboratory Medicine2 that focused on ophthalmic pathology. Having devoted a career to ophthalmic pathology, including integrating it into clinical ophthalmology practice, I am very supportive of their endeavor to emphasize the importance of this discipline to ophthalmologic teaching, research, and patient care. Ophthalmic pathology distinguishes ophthalmology as a medical specialty because we, as physicians, base our medical and surgical treatments of ophthalmic conditions on understanding the pathobiology of ophthalmic disease. Ophthalmic pathology and ophthalmology are inexorably linked; to diminish or dilute one diminishes or dilutes the other.

Regarding the importance of ophthalmic pathology in the education of ophthalmologists, I agree with the 3 suggestions raised by Clarkson in his editorial: regional ophthalmic pathology centers, enhancing the relationship with departments of pathology, and teaching clinicopathologic correlation through advanced imaging techniques. I would suggest the importance of ophthalmic pathology remaining a vibrant component of ophthalmology departments and ophthalmic practice as well. One example of how this may be accomplished is by linking ophthalmic pathology with a specific clinical, patient-based area of practice.

One such patient-based area of practice is ocular oncology. Ten of the 12 original articles in the Archives of Ophthalmology issue (83%) and 14 of 16 original articles (93%) in the Archives of Pathology and Laboratory Medicine issue were directly related to ocular oncology, many of which were submitted by ocular oncologists. This is an important consideration as ophthalmic pathology moves forward. Therefore, a fourth suggestion for Clarkson’s list is for ophthalmic pathology to become more aligned with specific patient-based ophthalmology areas, such as ocular oncology, in departments of ophthalmology and cancer centers.

This is not to diminish in any way the importance of ophthalmic pathology to other areas of ophthalmology, as there are ophthalmic pathology educational, research, and clinical components in all areas of ophthalmology. Alignment with other clinical disciplines such as cornea, retina, glaucoma, ocular plastics, and others may depend on geographic variations, prevalence of ophthalmic disease, and the particular emphasis of a given ophthalmology department. The important point is alignment with at least one area in an ophthalmology department or region.

For the field of ophthalmic pathology to advance, we as ophthalmic pathologists must not rest on past laurels; we must forge ahead by incorporating modern techniques and technologies into our practice. These entities include, but are not limited to, molecular biology, nanotechnology, and digital technology. We must remain engaged with ophthalmologists and within ophthalmology departments. As in the past, our success will be measured as deliverable accomplishments and contributions. These contributions have been, and only can be, to ophthalmology.

Hans E. Grossniklaus, MD, MBA

Author Affiliation: Department of Dermatology and Pathology, Emory University School of Medicine, Atlanta, Georgia.

Correspondence: Dr Grossniklaus, L. F. Montgomery Ophthalmic Pathology Laboratory, Emory Eye Center,