Upregulation of Interleukin 21 and Promotion of Interleukin 17 Production in Chronic or Recurrent Vogt-Koyanagi-Harada Disease

Fuzhen Li, BM; Peizeng Yang, MD, PhD; Xiaoli Liu, PhD; Chaokui Wang, BM; Shengping Hou, PhD; Aize Kijlstra, PhD

Objectives: To analyze the expression and potential role of interleukin (IL) 21 in the pathogenesis of Vogt-Koyanagi-Harada (VKH) disease.

Methods: Blood samples were obtained from patients with VKH disease and from healthy control subjects. Serum IL-21 level and IL-21 messenger RNA (mRNA) expression by peripheral blood mononuclear cells (PBMCs) were determined by enzyme-linked immunosorbent assay and by reverse transcriptase–polymerase chain reaction, respectively. Interleukin 17 and interferon γ levels in the supernatants of PBMCs and CD4+ T cells cultured with anti-CD3 and anti-CD28 antibodies in the presence or absence of recombinant IL-21 were detected by enzyme-linked immunosorbent assay.

Results: The results showed a significantly increased serum IL-21 level, as well as higher IL-21 mRNA expression by PBMCs, in patients having chronic or recurrent active VKH disease compared with patients having inactive VKH disease and with controls. In vitro experiments showed that recombinant IL-21 significantly increased IL-17 production by PBMCs and by CD4+ T cells from patients and from controls. However, recombinant IL-21 did not affect interferon γ expression by PBMCs or by CD4+ T cells.

Conclusion: Interleukin 21 may be involved in the pathogenesis of chronic or recurrent VKH disease, possibly by promoting IL-17 secretion.

Clinical Relevance: Findings from the present study suggest that IL-21 may be a potential target in the development of therapy for VKH disease.

healthy control subjects (10 men and 11 women [mean age, 32.5 years]) were included in the study. The diagnosis of VKH disease was made according to the revised diagnostic criteria. Among the patients with VKH disease, 15 had complete VKH disease, 13 had incomplete VKH disease, and 2 had probable VKH disease with typical bilateral sunset glow fundus and granulomatous anterior uveitis. Sixteen patients had chronic or recurrent active bilateral intraocular inflammation evidenced by mutton-fat keratic precipitates, cells in the anterior chamber, and aqueous flare in association with sunset glow fundus. Patients with active disease had received no immunosuppressive drugs for at least 1 week before study evaluation and blood drawing. Fourteen patients having inactive VKH disease with typical bilateral sunset glow fundus but without intraocular inflammation for at least 3 months after treatment formed a separate study group. Twelve patients with inactive disease had received no immunosuppressive drugs for at least 3 months, while 2 patients with inactive disease had received a small dosage of oral prednisone (5 mg every other day) for 1 month before blood drawing. This study was approved by the Ethics Committee of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China. All procedures followed the tenets of the Declaration of Helsinki, and informed consent was obtained from all patients with VKH disease and from controls.

Figure 1. Interleukin 21 (IL-21) levels in serum samples from patients with chronic or recurrent active Vogt-Koyanagi-Harada (VKH) disease (n=8), patients with inactive VKH disease (n=8), and healthy control subjects (n=10). Kruskal-Wallis test and Mann-Whitney test were used for statistical analyses.

SERUM SAMPLE PREPARATION
Blood samples were collected by venipuncture and were processed after clotting for 30 minutes at room temperature. Serum specimens were obtained by centrifugation at 3000g for 10 minutes and stored at –70°C until analysis.

CELL ISOLATION AND CULTURE
Anticoagulated blood samples were obtained using vacuum tubes containing EDTA. Peripheral blood mononuclear cells (PBMCs) were prepared by Ficoll-Hypaque density-gradient centrifugation. CD4+ T cells were purified by magnetic-activated cell sorting using a human CD4+ T-cell isolation kit (Miltenyi Biotec, Palo Alto, California). The PBMCs and CD4+ T cells were stimulated with anti-CD3 (OKT3, 0.5 µg/mL) and anti-CD28 antibodies (15E8, 0.1 µg/mL) (Miltenyi Biotec) in the presence or absence of recombinant (r) IL-21 (30 ng/mL) (PeproTech, Rocky Hill, New Jersey).

RNA PREPARATION AND REVERSE TRANSCRIPTASE–POLYMERASE CHAIN REACTION
Total RNA was extracted from freshly isolated PBMCs using a commercially available kit (RNase Plus Mini kit; Qiagen, Valencia, California) according to the manufacturer’s instructions. The following primers were used for reverse transcriptase–polymerase chain reaction (RT-PCR): IL-21 forward, 5’-GGCCCAAATCAAGTCAGCAAATA-3’, and IL-21 reverse, 5’-GGGATGTTAGTCTGTGTTCTG-3’ (38 cycles at 62°C); and β-actin forward, 5’-GGATCCAGAGCATCCTG-3’, and β-actin reverse, 5’-GATCCAGAGCATCCTG-3’ (30 cycles at 60°C). The ratio of IL-21 RT-PCR product to β-actin product was assessed using the identity of IL-21 and β-actin RT-PCR products was verified by sequencing using a commercially available system (Applied Biosystems model 3730 DNA sequencing system; Invitrogen Biotechnology Co, Shanghai, China).

ENZYME-LINKED IMMUNOSORBENT ASSAY FOR CYTOKINES
The concentration of serum IL-21 in patients and controls was assayed using a human IL-21 enzyme-linked immunosorbent assay kit (DuoSet; ebioscience, San Diego, California) with a detection limit of 31 pg/mL. The concentrations of IL-17 and IFN-γ in cell culture supernatants were measured using enzyme-linked immunosorbent assay development kits (DuoSet; R&D Systems, Minneapolis, Minnesota) with a detection limit of 15 pg/mL.

STATISTICAL ANALYSIS
One-way analysis of variance, paired-sample t test, Kruskal-Wallis test, and Mann-Whitney test were performed using commercially available statistical software (SPSS 12.0; SPSS Inc, Chicago, Illinois). Data are expressed as the mean (SD). P < .05 was considered statistically significant, while P < .01 divided by 3 (P < .02 [modified by Bonferroni correction]) was accepted in multiple comparisons.

RESULTS
Our results suggest that IL-21 is markedly upregulated during active uveitis episodes. Furthermore, rIL-21 may have a role in chronic or recurrent VKH disease by promoting IL-17 production.

IL-21 CONCENTRATION IN SERUM SAMPLES OF PATIENTS WITH VKH DISEASE AND CONTROLS
Interleukin 21 was detected in serum samples from patients with VKH disease and from controls (Figure 1). The mean level of IL-21 in patients with chronic or recurrent active VKH disease was significantly higher (212.2 [67.9] pg/mL) than that in patients with inactive VKH disease (90.1 [23.9] pg/mL) and in controls (90.8 [27.0] pg/mL) (P < .01 for both). There was no significant difference in serum IL-21 level between patients with inactive VKH disease and controls.
EFFECT OF rIL-21 ON IL-17 PRODUCTION

Interleukin 17 production was significantly increased by stimulation with anti-CD3 and anti-CD28 antibodies in patients having chronic or recurrent active VKH disease compared with patients having inactive VKH disease and with controls ($P<.01$ for both). Significant augmentation of IL-17 production by PBMCs on exposure to rIL-21 was found in all 3 study groups ($P<.05$ for all) (Figure 3A). Increased percentages of IL-17 production by PBMCs on stimulation by rIL-21 were 19.1% in patients with chronic or recurrent active VKH disease, 17.0% in patients with inactive VKH disease, and 25.5% in controls. Using analysis of variance, there was no difference among the 3 study groups in the magnitude of rIL-21 effect on IL-17 production by PBMCs. A further study was performed to examine the effect of rIL-21 on IL-17 production by activated CD4+ T cells. Consistent with the BMC results, the IL-17 level in the supernatants of cultured CD4+ T cells was significantly higher in patients with chronic or recurrent active VKH disease than in patients with inactive VKH disease or in controls ($P<.01$ for both) (Figure 3B). Recombinant IL-21 induced activated CD4+ T cells to secrete a much higher

EXPRESSON OF IL-21 mRNA BY PBMCs FROM PATIENTS WITH VKH DISEASE AND FROM CONTROLS

DNA sequencing and BLAST analysis (http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/information3.html) showed that RT-PCR products were identified as 100% homologous with the known IL-21 mRNA sequence. The IL-21 mRNA band intensity was normalized compared with the β-actin mRNA band. The mean intensity ratio of IL-21 RT-PCR product to β-actin product in patients with chronic or recurrent active VKH disease (0.68 [0.11]) was markedly higher than that in patients with inactive VKH disease (0.52 [0.08]) and in controls (0.52 [0.03]) ($P<.01$ for both) (Figure 2). No ratio difference was found between patients with inactive VKH disease and controls.
Among the 3 study groups using the Kruskal-Wallis test.

titude of rIL-21 effect on IL-17 production by CD4

PBMC results, no difference was found in the magni-

ficantly higher in patients with chronic or recurrent

active VKH disease than in patients with inactive VKH

disease and in controls (Table 2). However, during the active stage of VKH disease, we

observed a correlation between upregulated IL-21 and IL-17 production. The results herein showed that rIL-21 mark-

edly stimulated IL-17 production by PBMCs from patients with chronic or recurrent active VKH disease.

These results indicated that increased expression of peripherally circulating IL-21 correlated with VKH disease

activity. Our findings are in line with evidence showing increased IL-21 expression in serum or PBMCs in ani-

mal models20 and in patients with systemic lupus ery-

thematosus,11 primary Sjögren syndrome,21 and psoriasis.14 Interleukin 21 has also been reported to be overex-

pressed in affected tissues of patients with Crohn disease31,22 and with psoriasis.14 These data collectively

reveal that IL-21 is associated with the activity of auto-

immune diseases. It is notable that serum IL-21 refer-

cence levels from difference laboratories range from 16.5 pg/ml23 to 1051 pg/ml23. This wide range may be attribu-

ted to different techniques used in the experiments or to different populations tested.

In light of the association between increased serum IL-21 and VKH disease activity, we extended our re-

search to the role of IL-21 in this disease. Because T_{H}17s have a role in the pathogenesis of VKH disease,4 we

first analyzed the effect of rIL-21 on the production of IL-17. Consistent with a previous study,4 increased IL-17 was

observed in the active stage of VKH disease, suggesting a correlation between upregulated IL-21 and IL-17 pro-

duction. The results herein showed that rIL-21 markedly stimulated IL-17 production by PBMCs from patients

with VKH disease and from controls. Because CD4^{+} T cells have a critical role in the development of VKH

disease, we further tested the effect of IL-21 on IL-17 production by these cells. Similar results were observed with

PBMCs and with isolated CD4^{+} T cells. These findings validate the promotional effect of rIL-21 on IL-17 pro-

duction, as reported in various autoimmune diseases.5,9,14 Unexpectedly, we failed to find any difference in the magnitude of the effect of rIL-21 on IL-17 production among the 3 study groups. These results seem
to suggest that increased IL-17 production by PBMCs or by CD4+ T cells may be due to upregulated IL-21 rather than by higher sensitivity of these cells to this cytokine in this disease. In contrast, other studies24,25 failed to observe an effect of IL-21 on T₁₇s. This discrepancy may be explained by different experimental approaches and varied disease backgrounds in the studies.

Because T₁₇s are actively involved in VKH disease,2,3 our study further examined whether rIL-21 affected the expression of IFN-γ, a typical cytokine of T₁₇s, in patients with VKH disease. The results showed significantly increased IFN-γ production by PBMCs and CD4+ T cells activated by anti-CD3 and anti-CD28 antibodies in patients having chronic or recurrent active VKH disease compared with patients having inactive VKH disease and with controls. This finding was consistent with previously reported results.4 However, we found no effect of rIL-21 on IFN-γ production by PBMCs or by CD4+ T cells from patients with VKH disease and from controls. This result was generally consistent with findings in healthy individuals.6,11 However, IL-21 has been shown to potently promote IFN-γ expression by activated T cells from patients with rheumatoid arthritis13 and with inflammatory bowel diseases.6 Contrary to these results, other investigators have suggested a suppressive effect of IL-21 on IFN-γ production by T₁₇s in their developmental stage36 or by T cells in 2 animal models of rheumatoid arthritis treated with IL-21 receptor Fc fusion protein to block IL-21.12 These discrepant findings are not yet completely understood. The involvement of different mechanisms in different diseases may be an explanation. The use of varied techniques and conditions in the experiments may be another possibility.

In conclusion, the present study revealed an association of upregulated IL-21 with increased IL-17 in patients having chronic or recurrent VKH disease with active intraocular inflammation. Recombinant IL-21 effectively and equally stimulated IL-17 production by PBMCs and by CD4+ T cells from patients with VKH disease and from controls. However, rIL-21 did not affect IFN-γ expression by PBMCs or by CD4+ T cells. These results suggest that IL-21 may be involved in the pathogenesis of chronic or recurrent VKH disease, possibly by promoting IL-17 secretion. Recent evidence indicates that IL-21 is critical for differentiation and function of follicular T_Fs and that these cells are also involved in the development of autoimmune diseases.27 Future studies should investigate whether IL-21 may have a role in VKH disease through modulation of follicular T_Fs. In addition, IL-21 has been shown to affect CD8+ T cells, natural killer T cells, and B cells, which are all involved in autoimmune diseases.10 More studies are needed to clarify the effect of IL-21 on these cells and their possible role in VKH disease.

Submitted for Publication: December 31, 2009; final revision received April 2, 2010; accepted May 4, 2010.

Correspondence: Peizeng Yang, MD, PhD, The First Affiliated Hospital of Chongqing Medical University, Youyi Rd 1, Chongqing 400016, China (peizengcymu@126.com).

Financial Disclosure: None reported.

Funding/Support: This work was supported by grant 30630064 from the Key Project of National Science Foundation, by grant 2007BA118B10 from the National Supporting Project of China, by grant 30973242 from the National Nature Science Foundation Project, by grant 2008115 from the Key Project of Health Bureau of Chongqing, by grant 2008-1-15 from the Key Project of Medical Science and Technology of Chongqing, by grant Chongqing Science and Technology Commission (CSTC) 2009BA5037 from the Key Project of Nature Science Foundation of Chongqing, by Project of Chongqing, by grant CSTC 2008CA5003 from the Project of Chongqing Key Laboratory of Ophthalmology, and by Program for the Training of a Hundred Outstanding Science and Technology Leaders of Chongqing Municipality.

REFERENCES

24. Bubier JA, Sproule TJ, Foreman O, et al. A critical role for IL-21 receptor signal-

From the Archives of the Archives

Iridencleisis in chronic glaucoma. HOLTH (Christiana) reports two cases of progressive loss of vision and contraction of visual field in spite of iridectomy and sclerectomy. The disease process was cut short by iridencleisis which was followed by prompt improvement of sight and fields. The incarceration should be combined with flap-shaped or meridional iridotomy unless iridectomy has preceded, wholly subconjunctival and about 10 mm from the limbus. The lance knife is advised. Holth has never lost an eye nor seen sympathetic ophthalmia develop after this procedure.