vere trachoma and specifically included the variation among villages in the analysis. Furthermore, our analysis assessed the prevalence of clinically active trachoma in a village as opposed to its presence in an individual. A village-level analysis is most useful for trachoma program managers, who make treatment decisions based on the prevalence of trachoma in a village. Our findings suggest that in areas with hyperendemic trachoma treated through mass distribution of azithromycin, the signs of active trachoma can be expected to resolve slowly, even if antibiotic distributions are quite successful in reducing the prevalence of ocular chlamydia.

Jeremy D. Keenan, MD, MPH
Takele Lakew, MD, MPH
Wondu Alemayehu, MD, MPH
Mulukhen Melese, MD, MPH
Jenafir I. House, MPH
Nisha R. Acharya, MD, MS
Travis C. Porco, PhD, MD
Bruce D. Gaynor, MD
Thomas M. Lietman, MD

Author Affiliations: F. I. Proctor Foundation (Drs Keenan, Acharya, Porco, Gaynor, and Lietman and Ms House), Departments of Ophthalmology (Drs Keenan, Acharya, Porco, Gaynor, and Lietman) and Epidemiology and Biostatistics (Drs Porco and Lietman), and Institute for Global Health (Drs Lakew, University of California, San Francisco; and ORBIS International, Addis Ababa, Ethiopia). (REPRINTED) ARCH OPHTHALMOL / VOL 129 (NO. 4), APR 2011 WWW.ARCHOPHTHALMOL.COM

Correspondence: Dr Keenan, F. I. Proctor Foundation and Department of Ophthalmology, University of California, San Francisco, 95 Kirkham St, San Francisco, CA 94143 (jeremy.keenan@ucsf.edu).

Financial Disclosure: None reported.

Funding/Support: This work was supported by grants K23 EY019071 and U10 EY016214 from the National Institutes of Health, the Heed Ophthalmic Foundation, the International Trachoma Initiative, the Bernard Osher Foundation, That Man May See, the Bodri Foundation, the Harper Inglis Trust, the South Asia Research Fund, and Research to Prevent Blindness.

Additional Contributions: The Ethiopian Ministry of Health and many health care professionals, including Tadese Kebede, Berhanu Fikre, Mifta Shifa, MPH, and Tadese Birru, helped us organize and implement our fieldwork in Ethiopia.

Intraocular Invasion by Microsporidial Spores in a Case of Stromal Keratitis

Microbial keratitis is a visually disabling condition caused by a variety of infectious organisms. Although uncommon, microsporidial stromal keratitis has recently been reported as an emerging cause of stromal keratitis. Intraocular microsporidiosis causing endophthalmitis and sclerouveitis with clear cornea has been reported, although there was no evidence of contiguous anterior chamber involvement. We report a rare case of microsporidial stromal keratitis in which microsporidial spores were detected from corneal scraping, corneal tissue, and endothelial exudates.

Report of a Case. A 40-year-old woman had intermittent pain, redness, photophobia, and decreased vision in her right eye for 1 year. She had trauma with a leaf 1 year before her initial visit to us. Since then, she had been treated irregularly with topical antiviral medication (acyclovir, 3%) by various health care providers.

On examination, her best-corrected visual acuity was 20/70 OD. Slitlamp biomicroscopic examination of the right eye revealed conjunctival congestion, central stromal edema with Descemet folds, and keratic precipitates. Her intraocular pressure was normal. Based on results of the clinical evaluation, a diagnosis of herpes viral endothelitis was made. She began treatment with systemic acyclovir, 400 mg 5 times daily, and topical corticosteroid (prednisolone acetate, 1%). Although her visual acuity and clinical picture improved, she revisited us 4.5 months after the initial visit with a decrease in vision, tearing, and pain that had lasted 15 days. She was using topical steroid once every other day. Her visual acuity was light perception with projection OD. There was a 3.8 × 2.7-mm central full-thickness stromal infiltrate. The endothelium showed exudates arranged as a sheet. The corneal scrapings examined in potassium hydroxide and calcofluor white mount showed multiple oval microsporidial spores. The spores were also seen in Gram staining of the corneal scraping.

Comment. Stromal keratitis due to microsporidium is less common than superficial keratoconjunctivitis. It is frequently misdiagnosed as herpes simplex keratitis.
Previous reports have described various clinical pictures of stromal keratitis such as stromal edema with anterior to mid and/or deep stromal involvement with or without endothelial exudates and corneal opacity. However, to our knowledge, there are no reports documenting microsporidial spores in the endothelial exudates. The finding of intact Descemet membrane in histopathologic examination suggests that microsporidial spores may indeed...
pass through Descemet membrane into the anterior chamber, similar to fungi. Recently, microsporidia have been phylogenetically shown to be fungi, and their tissue behavior akin to that of fungi would be expected.4

Our patient had clinical features of herpetic viral endo- thelitis at the initial visit, which improved initially with antiviral treatment. There is a possibility that the patient may have had viral keratitis initially and then became secondarily infected with microsporidium. Also, coinfection by microsporidia with herpes cannot be excluded.

Penetrating graft rather than lamellar keratoplasty is recommended for patients with deep stromal involvement to avoid any chance of recurrence in the lamellar bed.3 In our case, the presence of microsporidial spores in the endothelial exudates highlights the possible penetration of microsporidial spores through intact Descemet membrane, thereby emphasizing the need for penetrating keratoplasty in cases of deep stromal involvement, especially with endothelial exudates.

We conclude that endothelial exudates may manifest in microsporidial keratitis, and the spores may be present in the endothelial exudates.

Sujata Das, MS, FRCS(Glasg)
Savitri Sharma, MD
Srikant K. Sahu, MS
Geeta K. Vemuganti, MD

Author Affiliations: Cornea and Anterior Segment Service (Dr Das and Mr Sahu) and Ocular Microbiology Service (Dr Sharma), LV Prasad Eye Institute, Bhubaneswar, and Ocular Pathology Service, LV Prasad Eye Institute, Hyderabad (Dr Vemuganti), India.

Correspondence: Dr Das, Cornea and Anterior Segment Service, LV Prasad Eye Institute, Patia, Bhubaneswar, Orissa 751024, India (sujatadas@lvpei.org).

Financial Disclosure: None reported.

Funding/Support: This work was supported by the Hyderabad Eye Research Foundation.

Actinomyces Infectious Crystalline Keratopathy

We report a difficult-to-treat, indolent infection following penetrating keratoplasty (PKP) with the clinical appearance of infectious crystalline keratopathy. The causative agent was not recovered from multiple corneal scrapings but morphologically resembles *Actinomyces* species histopathologically in the deep stroma of corneal tissue removed at repeat PKP.

Report of a Case. A 75-year-old woman underwent uncomplicated combined right PKP and lenticular phacoemulsification for Fuchs corneal dystrophy and cataract. Three months postoperatively, she developed peripheral stromal opacities associated with 2 loose sutures. These opacities grew despite topical treatment with tobramycin, and marked conjunctival injection and a moderate anterior chamber inflammatory reaction developed. She was referred to our service for treatment of corneal ulceration in the nasal and temporal portions of the graft (Figure 1A). Corneal scrapings revealed no organisms on Gram or Giemsa staining, and no organisms grew on aerobic, anaerobic, fungal, or viral cultures. She was treated with fortified cefazolin and gentamicin sulfate eyedrops but developed 2 new stromal infiltrates and required repeat PKP (Figure 1B). Histopathologic analysis of the removed tissue revealed full-thickness corneal edema and stromal scarring, consistent with healed keratitis. Gram staining at multiple levels failed to reveal the presence of organisms.

Four months postoperatively, the patient noted a foreign body sensation and was found to have an area of corneal thinning at the graft-host junction near the temporal site of previous ulceration. A loose suture in that area was noted and the patient was treated for presumed herpetic keratitis. No organisms grew from the suture, and the patient developed stromal opacities similar to her preoperative appearance. Repeat corneal ulceration (Figure 1C and D) prompted another PKP with removal of a 1-mm-larger disc to encompass the previous graft and additional host cornea affected by ulceration and thinning. Histopathologic analysis of the removed cornea revealed acute and chronic keratitis associated with centrifugal intrastromal colonies of strongly and uniformly gram-positive bacteria with short, stubby branches typical of *Actinomyces* species (Figure 2). Ziehl-Neelsen acid-fast staining was negative, suggesting *Actinomyces* rather than *Nocardia* species. Cultures of stromal tissue again were negative.

Postoperatively, graft and host corneal clarity were maintained. After corneal suture removal, visual acuity of 20/20 was achieved with a rigid gas-permeable contact lens.

Comment. *Actinomyces* can be a rare cause of infectious crystalline keratopathy, especially in an immune-suppressed condition such as a corneal graft. Infectious crystalline keratopathy is a unique corneal infection characterized by the slowly progressive development of needle-like opacities in the corneal stroma, most commonly caused by streptococcal species.1,2 To our knowledge, this is the first case of infectious crystalline keratopathy due to an organism with morphologic characteristics consistent with *Actinomyces*. There have been other rare reports of *Actinomyces* corneal infections. Severe corneal ulceration from *Actinomyces* has been reported,3 as has delayed-onset keratitis after laser in situ keratomileusis.4 In both of these cases, cure was achieved with debridement of the infected cornea and intensive treatment with topical antibiotics, as well as oral penicillin.