Phacomatosis Pigmentovascularis of Cesioflammea Type in 7 Patients

Combination of Ocular Pigmentation (Melanocytosis or Melanosis) and Nevus Flammeus With Risk for Melanoma

Carol L. Shields, MD; Brad E. Kligman, BS; Mayerling Suriano, MD; Vanessa Viloria; Juan C. Iturralde, MD; Margaret V. Shields; Emil A. T. Say, MD; Jerry A. Shields, MD

Objective: To describe the features of phacomatosis pigmentovascularis (cesioflammea type).

Design: Noninterventional retrospective case series composed of 7 patients.

Results: Nevus flammeus combined with ipsilateral ocular melanocytosis or melanosis was seen in all 7 patients. Additional contralateral nevus flammeus was observed in 3 patients. Nevus flammeus (unilateral in 4 patients and bilateral in 3 patients) was distributed in trigeminal nerves V1 (n=3), V2 (n=7), and V3 (n=5). Related findings included diffuse choroidal hemangioma (n=1) and glaucoma (n=1), with no patients having brain hemangioma or seizures. Ocular pigmented anomalies (unilateral in all 7 patients) included congenital ocular melanocytosis (n=6) and conjunctival acquired melanosis (n=1). Pigmentation was sectorial (partial) in 5 patients and complete in 2 patients. Melanocytosis involved the periocular skin in 1 patient, sclera in 2 patients, iris in 2 patients, and choroid in 4 patients. In 3 of 6 patients, melanocytosis was visible in the choroid only on dilated fundus evaluation. Related tumors included choroidal melanoma (n=3), optic disc melanocytoma (n=1), and conjunctival melanoma in situ (primary acquired melanosis) (n=1). Melanoma metastasis developed in 1 patient.

Conclusions: Phacomatosis pigmentovascularis shows features of nevus flammeus and more serious ocular pigmented abnormalities (uveoscleral melanocytosis and conjunctival melanosis). Melanocytosis may be detected only by dilated ocular fundus examination, as found in 3 of 6 patients. Furthermore, choroidal melanoma can develop from melanocytosis, as noted in 3 of our 6 patients (50%). All patients with nevus flammeus should be examined for phacomatosis pigmentovascularis by an ophthalmologist because ocular melanocytosis and uveal melanoma may remain hidden within the eye.

Arch Ophthalmol. 2011;129(6):746-750

P

HACOMATOSIS PIGMENTOVASCULARIS represents the coexistence of a cutaneous vascular malformation (most often nevus flammeus [port-wine stain]) with melanocytic nevus (most often ocular or dermal melanocytosis or both). Since phacomatosis pigmentovascularis was first reported in 1947 by Ota et al, there have been few clinical series published on this rare condition. In the dermatology literature, Cordisco et al described 25 patients, Vidaurri-de la Cruz et al identified 24 patients, and Fernández-Guarino et al reported on 15 patients. In the ophthalmology literature, Teekhasaenee and Ritch described 1997 a series of 9 patients with phacomatosis pigmentovascularis, some of whom demonstrated related glaucoma. In 2005, Tran and Zografos reported 3 cases of phacomatosis pigmentovascularis that were associated with uveal melanoma.

In 2005, Happle proposed a reclassification of phacomatosis pigmentovascularis with emphasis on creating relevant descriptive nomenclature rather than using the prior numerical system. The previous cumbersome classification devised in 1947 by Ota et al characterized groups I to V, with a and b subdivisions, whereas the revised classification proposed in 2005 by Happle categorized 3 groups descriptively as phacomatosis cesioflammea, phacomatosis spilorosea, and phacomatosis cesiomarmorata (Table 1). Herein, we describe 7 patients with phacomatosis cesioflammea, all diagnosed following ocular consultation.

REPORT OF CASES

Clinical features of the patients with phacomatosis cesioflammea are summarized in Table 2 (Figures 1, 2, and 3). All cases were diagnosed following our ocular examination.
lateral ocular pigmentation that proved on examination of the conjunctiva with atypia (melanoma in situ) (Figure 3A and B). Phacomatosis cesioflammea was diagnosed.

CASE 7

A 6-week-old girl had been noted after birth to have bilateral congenital cutaneous nevus flammeus and was treated with dermatologic laser photocoagulation (Figure 2). At age 2 years, the tongue showed mild left hyperemia. Amblyopia in the right eye led to the discovery of subtle epiretinal membrane and prominent diffuse choroidal melanocytosis. Phacomatosis cesioflammea was diagnosed.

COMMENT

Phakos is Greek for birthmark or spot. Phacomatosis (preferred over phakomatosis when a Latin adjective follows) is a term applied to a group of genetically determined conditions with oculoneurocutaneous findings. According to Happle, phacomatosis pigmentovascularis can be divided into 3 distinct types, including phacomatosis cesioflammea, phacomatosis spilorosea, and phacomatosis cesiomarmorata (Table 1). Phacomatosis cesioflammea is characterized by coexistence of a dermal melanocytosis or blue spot and nevus flammeus (port-wine stain). Caesius is Latin for bluish gray, and flammea is Latin for flame or fire. Additional findings in phacomatosis cesioflammea include nevus anemicus, focal alopecia, asymmetric limb length, glaucoma, and hypoplastic nails. Phacomatosis spilorosea is characterized by coexistence of nevus spilus (a speckled lentiginous nevus) and a light pink telangiectatic nevus (different from the darker port-wine stain). Spilo is Latin for spot or speckled, and rosae is Latin for pink. Associated findings include lymphedema, hemiparesis, seizures, and asymmetric limb length. Phacomatosis cesiomarmorata is the association of nevus caesius (blue-gray nevus and mongolian spot) and cutis marmorata telangiectatica congenita. Marmorata is Latin for marblelike. Related defects include asymmetric cerebral hemispheres, leg hyperplasia, and blue sclera.

Fernández-Guarino et al reviewed 216 published cases of phacomatosis pigmentovascularis through May 2007 and classified 77% as cesioflammea, 13% as spilorosea, 1% as cesiomarmorata, and 8% as unclassifiable. Almost all information on this topic in the literature emanates

<table>
<thead>
<tr>
<th>New Classification</th>
<th>Findings</th>
<th>Old Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phacomatosis cesioflammea</td>
<td>Nevus caesius (blue spot) or melanocytosis with nevus flammeus</td>
<td>PPV Ia/b</td>
</tr>
<tr>
<td>Phacomatosis spilorosea</td>
<td>Nevus spilus (speckled lentiginous nevus) with pale pink telangiectatic nevus</td>
<td>PPV Ia/b</td>
</tr>
<tr>
<td>Phacomatosis cesiomarmorata</td>
<td>Nevus caesius (blue spot) with cutis marmorata</td>
<td>PPV Va/b</td>
</tr>
<tr>
<td>Phacomatosis pigmentovascularis uncensifiable</td>
<td>Various pigmenitary and vascular nevi</td>
<td>PPV Va/b and no name</td>
</tr>
</tbody>
</table>

*a Revised classification proposed by Happle. The old classification of type I was considered not truly present in clinical practice, so it was not included in the new classification. The old type III was also partly type IV, which affected its reclassification to the new types.*
from dermatology studies. Few studies exist in the ophthalmology literature. A PubMed survey for the keywords phacomatosis pigmentovascularis and ophthalmology or eye yielded only 9 relevant publications, most of which were case reports. Teekhasaenee and Ritch described a series of 9 patients with phacomatosis pigmentovascularis from their glaucoma practice and noted melanocytosis bilaterally in 7 of them. They reported that congenital glaucoma occurred in all 10 eyes with both melanocytosis and episcleral vascular malformations of Sturge-Weber syndrome. Eyes with melanocytosis only or episcleral vascular malformations only did not develop glaucoma, so the authors concluded that the coexistence of these 2 conditions in one eye was a strong indicator of the development of glaucoma. They also advised long-term follow-up of all such patients for secondary glaucoma. Tran and Zografos described 3 patients with phacomatosis pigmentovascularis, classified as type IIb in their study but reclassified by us using the new terminology as phacomatosis cesioflammea. Among patients in that study, melanocytosis was unilateral and nevus flammeus was unilateral, but the conditions were contralateral to each other in 2 cases and ipsilateral in 1 case. All 3 patients were initially seen with uveal melanoma in the eye with melanocytosis. These authors advised long-term follow-up for melanoma in affected patients.

In our case series, 6 patients had unilateral melanocytosis, and 1 patient had unilateral conjunctival primary acquired melanosis. Nevus flammeus was ipsilateral in all 7 patients and also contralateral in 3 patients. Among a glaucoma-based practice in the study by Teekhasaenee and Ritch, glaucoma was present in 10 eyes, and no patient showed melanoma. Conversely, in our tumor-based practice, glaucoma was observed in no patient, and 4 of 7 patients demonstrated melanoma. Findings similar to ours were reported by Tran and Zografos in their tumor-based practice. In fact, none of our patients had been correctly diagnosed as having phacomatosis pigmentovascularis before referral, and the reason for referral was possible melanoma in 5 patients. In our series, case 6 (Table 2) had nevus flammeus that was unilateral and contralateral to the other eye.
meus and ipsilateral extensive primary acquired melanosis, a relationship that has not been previously described as a classic feature of phacomatosis pigmentovascularis. We included the patient in this series because of the melanocytic derivation of the precancerous melanosis (melanoma in situ) in the background of nevus flammeus.

Dilated ocular examination is critical in establishing the diagnosis of melanocytosis. Most important, ocular melanocytosis was not visible externally in 5 of 6 patients herein and was apparent only with close examination of the sclera, iris, and choroid. In 3 of 6 patients, the pigment was solely in the choroid and was found only after dilated ocular examination. For example, 1 child received frequent laser therapy to a facial nevus flammeus and was finally discovered to have choroidal melanocytosis during our dilated ocular examination several years later. Based on our findings, we concur with Tran and Zografos7 that all patients with phacomatosis pigmentovascularis should receive dilated fundus evaluation for uveal melanoma. Furthermore, we believe that all patients with Sturge-Weber syndrome or cutaneous nevus flammeus should undergo dilated fundus examination for uveal melanocytosis and possible melanoma.

The association of dermal melanocytosis with cutaneous nevus flammeus is believed to result from a twin-spotting phenomenon.9,10 Twin spotting is the association of 2 genetically different clones of cells within a region of normal cells, generated by somatic recombination. In other words, twin spotting produces mosaic distribution of lesions, is sporadic and usually without familial occurrence, and affects monozygotic twins discordantly. Moutray et al11 describe monozygotic twins who were discordant for phacomatosis cesioflammea, supporting the twin-spotting theory. In that study, twin 1 had normal findings, and twin 2 had cutaneous nevus flammeus of the arm, maxilla, and periocular region, in addition to mongolian spot and bilateral ocular melanocytosis. The authors concluded that phacomatosis pigmentovascularis resulted from mosaicism related to a postzygotic event.

In summary, we describe 7 patients with phacomatosis pigmentovascularis of cesioflammea type. We observed some new findings in our case series, including epiretinal membrane in 1 patient, primary acquired melanosis (melanoma in situ) in 1 patient, and ipsilateral monosomy 3 malignant melanoma with metastasis in another patient. These findings emphasize the importance of dilated ocular examination in the diagnosis and management of phacomatosis pigmentovascularis.
and related choroidal melanoma in 3 patients. In several patients, ocular melanocytosis was not obvious externally, as it involved primarily the choroid. We advise that all patients with nevus flammeus should have a complete ocular evaluation by an ophthalmologist to search for related melanocytosis and possible melanoma, which may not be clinically evident to the nonophthalmologist.

Submitted for Publication: July 9, 2010; revision received September 1, 2010; accepted October 7, 2010.

Correspondence: Carol L. Shields, MD, Ocular Oncology Service, Wills Eye Institute, Thomas Jefferson University, 840 Walnut St, Ste 1440, Philadelphia, PA 19107 (carol.shields@shieldsoncology.com).

Author Contributions: Dr C. L. Shields had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Financial Disclosure: None reported.

Funding/Support: This study was supported by the Eye Tumor Research Foundation (Dr C. L. Shields).

Role of the Sponsor: The funders had no role in the design or conduct of the study; in the collection, analysis, or interpretation of the data; or in the preparation, review, or approval of the manuscript.

REFERENCES


The editorial staff of Archives of Ophthalmology is pleased to announce the Surgeon’s Corner, which focuses on surgical aspects of ophthalmology. The goal for this section is to provide readers with current information on surgical techniques, devices and outcomes and perioperative management. Consideration for inclusion in Surgeon’s Corner will be given to manuscripts addressing broadly applicable techniques using reasonably accessible technology. Preference for publication will be given to concise manuscripts whose results and conclusions are adequately supported by data and rigorous statistical analysis. Manuscripts submitted along with high-quality videos for online publication in Archives of Ophthalmology (http://www.archophthalmol.com) are strongly encouraged, and the accompanying video will be considered during the review process. Papers should fit into existing categories for Clinical Trials, Clinical Science, New Instruments, Surgical Techniques, or Research Letters as described in Instructions for Authors. A desire to be considered for this section should be indicated by the authors at the time of manuscript submission.