a single guanine to adenosine substitution resulting in a Glu213Lys amino acid change. The exact effect of the amino acid substitution, from glutamic acid (which has a negative charge at physiologic pH) to lysine (which has a positive charge), is unclear. However, a similar missense mutation in hemoglobin (specifically a glutamic acid to valine substitution) retards ionic cross-linking and results in altered tertiary protein structure to yield, most famously, the “sickling” of erythrocytes characteristic of sickle cell anemia.

Dysfunction of bestrophin likely indirectly impairs apical fluid transport. This then indirectly impairs RPE phagocytosis of photoreceptor outer segments, lysosomal function, and regulation of subretinal fluid, yielding the characteristic vitelliform lesions and serous retinal detachments characteristic of BVMD. Similarly, the phenotypic severity of the siblings we describe, particularly serious retinal detachments and retinoschisis, suggests the mutation they harbor grossly affects chloride transport and Ca +2 signaling, both thought to underlie RPE ionic transport and fluid homeostasis.

In summary, we herein present 2 siblings with BVMD, both exhibiting a previously unreported missense mutation in BEST1 as well as the novel findings of retinoschisis and a full-thickness macular hole.

Ruwan A. Silva, MD
Audina M. Berrocal, MD
Byron L. Lam, MD
Thomas A. Albini, MD

Published Online: April 9, 2013. doi: 10.1001/jamaopthalmol.2013.2047

Author Affiliations: Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, Florida.

Correspondence: Dr Albini, Department of Ophthalmology, Bascom Palmer Eye Institute, 900 17th St NW, Miami, FL 33136 (talbini@med.miami.edu).

Conflict of Interest Disclosures: None reported.

fiber types, fiber sizes, electromyography characteristics, vascular content, and metabolic activity. It is speculated that these cases had a lack of development of global fibers but complete development of orbital fibers. More research is needed into this differential development of the extraocular fibers in the future.

Congenital strabismus in humans can result from mutations in a number of genes, including PHOX2A, SALL4, HOXA1, ROBO3, and KIF21A, that are essential to the normal development of brainstem motor neurons or axons. Because of the nonspecific nature of the disorder, genetic analysis was not possible in our case.

The aim of this case report was to highlight the possible separate global and orbital development of MR and the management of relatively larger deviations and to be ready to alter the surgical plan based on intraoperative findings. The management of these types of cases is very challenging and involves supramaximal recessions and muscle transpositions in cases of muscle palsy. The management by partial vertical rectus transposition with Foster augmented sutures and lateral rectus recession had reasonable postoperative surgical success in all our cases as well and avoided an anterior ischemic complication.

Anirudh Singh, MS
Anudeepa Sharma, MBBS
Pradeep Sharma, MD, FAMS

Published Online: April 9, 2013. doi: 10.1001/jamaophthalmol.2013.2889

Author Affiliations: Strabismus and Neuro-ophthalmology Division, R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.

Correspondence: Dr Pradeep Sharma, Strabismus and Neuro-
Ophthalmology Division, R. P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi 110029, India (drpsharma57@yahoo.com).

Conflict of Interest Disclosures: None reported.


Ophthalmic Images

Molteno Implant Functioning as a Culture Plate
Tabassum Ali, MD
Christine Callahan, MD

A 43-year-old male patient with traumatic glaucoma and a previous Molteno implant who presented with exposure of the implant. Surgical removal of the implant yielded specimen samples that grew Mycobacterium fortuitum. The patient was successfully treated with topical moxifloxacin hydrochloride.