IMPORTANCE The Diabetic Retinopathy Clinical Research Network Protocol S randomized clinical trial results suggest that ranibizumab is a reasonable treatment alternative to panretinal photocoagulation (PRP) when managing proliferative diabetic retinopathy (PDR), with or without concomitant baseline diabetic macular edema (DME). However, ranibizumab injections are costly. Thus, it would be useful to examine the relative cost-effectiveness of these 2 treatment modalities.

OBJECTIVE To evaluate incremental cost-effectiveness ratios of 0.5-mg ranibizumab therapy vs PRP for PDR.

DESIGN, SETTING, AND PARTICIPANTS Preplanned secondary analysis using efficacy, safety, and resource utilization data through 2 years of follow-up at 55 US sites for 213 adults with PDR. Data were collected from February 2012 to January 2015.

INTERVENTIONS Intravitreous 0.5-mg ranibizumab at baseline and as frequently as every 4 weeks based on a structured retreatment protocol or PRP at baseline for PDR. Eyes in both groups could receive ranibizumab for concomitant DME.

MAIN OUTCOMES AND MEASURES Incremental cost-effectiveness ratios of ranibizumab compared with PRP evaluated within 2 prespecified subgroups for the study eye: with baseline vision-impairing (Snellen equivalent 20/32 or worse) DME and without baseline vision-impairing DME.

RESULTS The study included 305 adults with PDR, the mean age was 52 years, 44% were women, and 52% were white. Of the 46 participants with PDR and vision-impairing DME at baseline, 21 were assigned to the ranibizumab group and 25 to the PRP group (plus ranibizumab for DME). Among the remaining participants without baseline vision-impairing DME, 80 and 87 were in the ranibizumab and PRP groups, respectively. For participants with and without baseline vision-impairing DME, the incremental cost-effectiveness ratios of ranibizumab therapy compared with PRP were $55 568/quality-adjusted life-year and $662 978/quality-adjusted life-year, respectively, over 2 years.

CONCLUSIONS AND RELEVANCE Over 2 years, compared with PRP, 0.5-mg ranibizumab as given in this trial is within the $50 000/quality-adjusted life-year to $150 000/quality-adjusted life-year range frequently cited as cost-effective in the United States for eyes presenting with PDR and vision-impairing DME, but not for those with PDR without vision-imapping DME.
Diabetic retinopathy is the most common cause of blindness among working-age adults.\textsuperscript{1,2} Many patients have nonproliferative diabetic retinopathy; however, some develop proliferative diabetic retinopathy (PDR), which can lead to blindness from traction retinal detachment, vitreous hemorrhage, or neovascular glaucoma. Panretinal photocoagulation (PRP) has been the standard care for treating most eyes with PDR for decades but destroys retinal tissue, which may cause iatrogenic peripheral vision loss or exacerbation of diabetic macular edema (DME), resulting in central vision loss. The Diabetic Retinopathy Clinical Research Network (DRCR.net) Protocol S randomized clinical trial comparing intravitreous antivascular endothelial growth factor (anti-VEGF) therapy using 0.5-mg ranibizumab vs PRP for patients with PDR demonstrated that eyes in the ranibizumab group had a mean visual acuity change from baseline to 2 years that was noninferior to PRP.\textsuperscript{3} In addition, the ranibizumab group had better outcomes across a variety of dimensions, including better visual acuity change from baseline over 2 years (area under the curve), less peripheral visual field sensitivity loss, fewer vitrectomies for complications of PDR, and fewer eyes developing DME with vision loss among eyes without DME at baseline. Eyes in both groups could receive ranibizumab for treatment of DME.

However, ranibizumab therapy is much more expensive than PRP treatment. Each single-use vial of 0.5-mg ranibizumab costs $1916 plus a $103 procedural or surgical fee for administering the injection.\textsuperscript{4} By comparison, each PRP treatment costs $345.\textsuperscript{4} Because patients often require multiple injections, the cost differential between the 2 treatment options can be substantial. Thus, while ranibizumab may be a viable alternative therapy to PRP for clinical outcomes, questions remain as to which is more cost-effective. This study reports a preplanned secondary analysis from the DRCR.net Protocol S assessing incremental cost-effectiveness of 0.5-mg ranibizumab vs PRP for the treatment of PDR.

### Methods

#### Overview

In a DRCR.net randomized clinical trial at 55 clinical sites throughout the United States from February 2012 to January 2015, trial participants were at least 18 years old, had type 1 or 2 diabetes, had PDR in at least 1 eye, no prior PRP, no intraocular anti-VEGF therapy in the prior 2 months, and a best-corrected visual acuity letter score of at least 24 (approximate Snellen equivalent 20/320 or better). If both eyes were eligible, participants could have 2 eyes in the study, 1 eye treated with PRP and 1 with ranibizumab. However, because it is not possible to partition cost-effectiveness of each treatment when both eyes received different treatments, this analysis only evaluates the 213 participants (70% of study participants) with 1 study eye. The study adhered to the tenets of the Declaration of Helsinki and was approved by local institutional review boards or a central institutional review board if the site did not have a local board. Study participants provided written informed consent.

Eyes assigned to ranibizumab injections for PDR were treated as often as monthly based on specific retreatment criteria.\textsuperscript{3} These eyes also could receive PRP if protocol-defined failure criteria were met. Eyes assigned to PRP for PDR received PRP at baseline and then again during follow-up if the size or extent of neovascularization increased. Eyes in both groups were required to receive 0.5-mg ranibizumab for vision-impairing central-involved DME (visual acuity letter score ≤78 [approximate Snelleneq 20/32 or worse]) at baseline and could receive ranibizumab injections to treat DME if needed during the course of the trial. Because eyes with vision-impairing DME at baseline were required to initiate ranibizumab therapy for DME at entry in both treatment groups, the cost-effectiveness analysis of the 2 interventions was performed within subgroups for persons with and without vision-impairing DME at baseline. Additional details on the study protocols and eligibility can be found in the publication on the primary outcome.\textsuperscript{3}

#### Analysis Plan

All eyes had best-corrected visual acuity measurements obtained at baseline and every 16 weeks. The protocol planned an economic analysis and specified collection of data on cost and health-related quality of life, enabling a cost-utility analysis to be performed. During the trial, resource utilization data were collected, including number of clinic visits and number and types of diagnostic and therapeutic ocular procedures performed in each group. The study also collected functional outcome data related to vision at baseline and annually.\textsuperscript{5-7} Other outcomes included patient-level health preferences using a time-tradeoff questionnaire. A P value of < .05 was considered significant, and P values are 2-sided.

#### Costs

To capture patient resource utilization during the trial, cost data for all diagnostic/therapeutic ocular procedures performed were tabulated to obtain a total cost for eye care services during 2 years of follow-up. Costs were calculated based on the 2016 Medicare fee schedule of allowable charges and included physician and facility fees.\textsuperscript{4} In addition, costs associated with treatment of ocular (eg, vitrectomy for complications of PDR or endophthalmitis) and systemic adverse events...
Table 1. Mean per-Patient Costs of Ranibizumab and Panretinal Photocoagulation Groups Over 2 Years of Follow-up (in 2016 US Dollars)

<table>
<thead>
<tr>
<th>Clinic Visits/Diagnostic Procedures</th>
<th>Vision-Impairing DME At Baseline, $</th>
<th>Cost of Follow-up (in 2016 US Dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without</td>
<td>PRP for PDR, Ranibizumab for DME (n = 25)</td>
<td>Ranibizumab for PDR and DME (n = 21)</td>
</tr>
<tr>
<td>Clinic visits/diagnostic procedures</td>
<td>908</td>
<td>1258</td>
</tr>
<tr>
<td>PRP</td>
<td>667</td>
<td>131</td>
</tr>
<tr>
<td>Anti-VEGF injection procedure</td>
<td>724</td>
<td>1242</td>
</tr>
<tr>
<td>0.5-mg Ranibizumab</td>
<td>13 413</td>
<td>22 994</td>
</tr>
<tr>
<td>Vitrectomies</td>
<td>947</td>
<td>705</td>
</tr>
<tr>
<td>Other intraocular therapiesb</td>
<td>763</td>
<td>684</td>
</tr>
<tr>
<td>Systemic adverse eventsc</td>
<td>7098</td>
<td>2560</td>
</tr>
<tr>
<td>Totalc</td>
<td>24 520</td>
<td>29 574</td>
</tr>
</tbody>
</table>

Abbreviations: Anti-VEGF, anti-vascular endothelial growth factor; DME, diabetic macular edema; PRP, panretinal photocoagulation.

b With visual acuity letter score less than 78 (approximate Snellen equivalent 20/32 or worse) at baseline.

c Includes treatment for ocular adverse events such as myocardial infarction and cerebrovascular accident.

d Participants in all groups received 0.5-mg ranibizumab if they developed DME over the 2 years of the trial.

tenthousand bootstrap replications of the incremental effect health instead of perfect vision, and 1 using patient time-tradeoff questions. More details can be found in the eAppendix in the Supplement.12

Cost-effectiveness
The incremental cost-effectiveness ratio (ICER) was calculated by taking the incremental cost of ranibizumab vs PRP and dividing by incremental QALYs gained of ranibizumab vs PRP. Incremental cost-effectiveness ratios were computed for subgroups with and without concomitant baseline DME. A higher ICER indicates a given intervention is less cost-effective than another.

Ten thousand bootstrap replications of the incremental effects and costs were created by sampling patients as well as sampling unit cost and visual acuity-to-utility data from distributions shown in eTable 1 in the Supplement. This nonparametric bootstrap creates incremental cost and QALY pairs used to create the cost-effectiveness acceptability curves that characterize overall uncertainty in the cost-effectiveness ratio.13

Results
Baseline characteristics of the study population for the cost-effectiveness analysis stratified by whether the eye was randomly assigned to receive PRP or ranibizumab and whether it had vision-impairing DME at baseline are shown in eTable 3 in the Supplement.

Health Utility
To capture changes in health-related quality of life associated with receipt of the 2 interventions over the course of the trial, best-corrected visual acuities at the 16-week, 32-week, 52-week, 68-week, 84-week, and 104-week visit from the better-seeing eye were converted into quality-adjusted life-years (QALYs) using commonly used mappings by Brown et al.9 Prior research has shown that quality of life is most closely related to vision in the better-seeing eye.10 However, 3 other methods were used in the sensitivity analysis: 1 using the treated eye,11 using a utility scale with an upper anchor of perfect health instead of perfect vision, and 1 using patient time-tradeoff questions. More details can be found in the eAppendix in the Supplement.12

Costs
Participants in the PRP group receiving ranibizumab for vision-impairing DME at baseline received a mean of 7 ranibizumab injections during 2 years compared with 12 in the ranibizumab group with baseline DME. Over the 2-year study period, those with vision-impairing DME at baseline (Table 1) assigned to ranibizumab incurred costs of $29 574 compared with $24 520 for the PRP plus ranibizumab group (difference, $5053; 95% CI, −$7695 to $17 801). Those with PDR without vision-impairing DME at baseline assigned to ranibizumab incurred costs of $22 576 compared with $7445 for those given PRP, (difference, $15 131; 95% CI, $11 480 to −$18 782).

Health Utilities
When calculating health utilities based on best-corrected visual acuities in the better-seeing eye, ranibizumab showed a slight improvement vs PRP over 2 years. Table 2 shows participants with baseline vision-impairing DME had improvement in QALYs with ranibizumab relative to PRP (0.031 vs −0.06); the difference between the therapies was 0.091 (95% CI, −0.079 to 0.261). For eyes without baseline vision-impairing DME, ranibizumab had a QALY of −0.007 compared with −0.03 QALY for eyes treated with PRP (difference, 0.023; 95% CI, −0.037 to 0.82). Differences in health utilities using other methods (eg, using visual acuities from the treated eye or using questionnaire data) are in eTables 4-6 in the Supplement.
Table 2. Change in Quality-Adjusted Life-years and Cost-effectiveness Results During 2 Years (Utilities Converted From Visual Acuity in the Better-Seeing Eye)

<table>
<thead>
<tr>
<th>Cost-effectiveness Results Over 2 years</th>
<th>Vision-Impairing DME At Baseline</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>With*</td>
<td>PRP for PDR and Ranibizumab for DME, $ (n = 25)</td>
<td>Ranibizumab for PDR and DME, $ (n = 21)</td>
<td>Difference, $ (95% CI)</td>
</tr>
<tr>
<td>Costs</td>
<td>24 520</td>
<td>29 574</td>
<td>5053 (−7695 to 17 801)</td>
</tr>
<tr>
<td>QALYs, y</td>
<td>−0.060</td>
<td>0.031</td>
<td>0.091 (−0.079 to 0.261)</td>
</tr>
<tr>
<td>ICER</td>
<td>NA</td>
<td>NA</td>
<td>55 568/QALY</td>
</tr>
</tbody>
</table>

Abbreviations: DME, diabetic macular edema; ICER, incremental cost-effectiveness ratios; PDR, proliferative diabetic retinopathy; PRP, panretinal photocoagulation; QALY, quality-adjusted life-year.

* Participants received ranibizumab or PRP for PDR with and without concomitant baseline DME (utilities converted from visual acuity in the better-seeing eye). Individuals who died had a utility of 0 after the date of death. In converting from best-corrected visual acuity, letter scores were converted to Snellen visual acuities and then to utility levels using the mapping from Brown et al.9

Discussion

This preplanned secondary analysis suggests that for patients with PDR without baseline vision-impairing DME, PRP is more cost-effective than ranibizumab treatment through the 2-year follow-up visit. However, ranibizumab alone may be a more cost-effective therapeutic option through at least 2 years for patients with PDR who also have concomitant vision-impairing DME at baseline compared with using PRP to treat PDR and ranibizumab to treat DME as given in this trial. These findings need to be considered in the context of the clinically relevant benefits of ranibizumab compared with PRP reported after 2 years of follow-up in this trial. These benefits included that the group assigned to ranibizumab without PRP for PDR had better visual acuity through 2 years, less peripheral visual field loss, required fewer vitrectomies, and, among eyes without vision-impairing DME at baseline, were less likely to develop DME with vision impairment. While ongoing follow-up of these study participants continues, outcomes beyond 2 years were not simulated in this cost-effectiveness analysis because to our knowledge, there are no data in the literature to provide a reasonable approximation of future visual acuity outcomes, frequency of adverse events including vitrectomies, number of treatments, and costs beyond 2 years for participants in each of the treatment arms. If the number of injections tapers off but vision gains persist, the longer-term cost-effectiveness may improve.

While the costs of 1 or 2 PRP treatments are less expensive than ranibizumab given 10 to 13 times over 2 years, it is important to compare the complexity of true costs with the complexity of gains in quality of life for the ranibizumab and PRP group as analyzed in this cost-effectiveness analysis. This DRCCR.net cost-effectiveness analysis is substantially different from the methods used in a prior article3,4 discussing costs of PRP vs ranibizumab using previously published data from the DRCCR.net Protocol 5 but not from the DRCCR.net investigators.3,4 That article reported that intravitreous ranibizumab compared with no therapy would have an ICER of $19 150 over 2 years. Many differences exist between that analysis and the one presented here.
The other analysis used data from the Diabetic Retinopathy Study (from the 1970s) to model outcomes for eyes receiving PRP and assumed ranibizumab outcomes would be equivalent to PRP outcomes, whereas our DRCR.net cost-effectiveness analysis used actual visual acuities along with other efficacy and safety outcomes from Protocol S. Our DRCR.net analysis also considered actual resource utilization from trial participants. Furthermore, our DRCR.net study directly compared cost-effectiveness of ranibizumab vs PRP as opposed to comparing each therapy vs a strategy of no treatment. Nowadays, observation of high-risk PDR would be considered unethical for most patients. In addition, our DRCR.net study examined the clinically relevant subpopulations of patients with vision-impairing DME at baseline vs those without baseline DME, demonstrating ranibizumab was cost-effective for patients with vision-impairing DME at baseline and not as cost-effective as PRP for patients without vision-impairing DME at baseline, justifying the need for a stratified analysis. Our DRCR.net analysis also performed a 2-way sensitivity analysis, simultaneously varying the costs of anti-VEGF and PRP, allowing readers to apply the study findings to other anti-VEGF agents (if one were to assume those agents have equivalent efficacy and safety profiles as 0.5-mg ranibizumab) and to different prices for these interventions in other countries.

Limitations
Nevertheless, there are several limitations to our DRCR.net analysis. First, the use of best-corrected visual acuity in the better-seeing eye or the study eye as a surrogate for overall health-related quality of life may not fully capture all aspects of quality of well-being associated with receipt of these inter-
Cost-effectiveness of Intravitreous Ranibizumab vs Panretinal Photocoagulation

ARTICLE INFORMATION

Accepted for Publication: March 9, 2017.
Published Online: May 8, 2017.

Author Affiliations: Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor (Hutton, Stein); Department of Industrial and Operations Engineering, University of Michigan College of Engineering, Ann Arbor (Hutton); Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor (Hutton, Stein); Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor (Stein);

© 2017 American Medical Association. All rights reserved.

JAMA Ophthalmology June 2017 Volume 135, Number 6 581

conclusions

Compared with PRP over 2 years, 0.5-mg ranibizumab as given in this trial is within the $50 000/QALY to $150 000/QALY range frequently cited as cost-effective in the United States for eyes presenting with PDR and vision-impairing DME but not for those without baseline vision-impairing DME. From a societal perspective, in developed countries such as the United States, ranibizumab through 2 years as an alternative therapy to PRP for PDR with vision-impairing DME at baseline provides clinically relevant benefits and also is cost-effective. However, for PDR without vision-impairing DME, which may be the more common clinical presentation, PRP is the more cost-effective treatment option through at least 2 years. These results should be tempered by the small numbers of eyes evaluated, especially for the subgroups with PDR and vision-impairing DME at baseline. The cost-effectiveness acceptability curves (Figure 2) highlight uncertainty related to the small numbers. Furthermore, the lack of cost-effectiveness among eyes without vision-impairing DME at baseline is at odds with the potential benefits of anti-VEGF therapy in this situation, including better visual acuity over 2 years, less peripheral visual field loss, fewer vitrectomies, and fewer eyes developing vision-impairing DME (among eyes without vision-impairing DME at baseline) for which anti-VEGF therapy subsequently would be considered. Additional data beyond 2 years would be valuable to determine whether the cost-effectiveness results obtained at 2 years persist with longer follow-up. Until then, considerations of visual acuity and other ocular outcomes (such as visual field loss, need for vitrectomy, and need for anti-VEGF therapy for DME among eyes without DME at the time of initiating treatment for PDR), ocular and systemic safety, adherence to and frequency of follow-up of each regimen, and patient preferences should be weighed by patients with physician guidance when deciding whether to consider initiating anti-VEGF or PRP for PDR.

Figure 2. Cost-effectiveness Acceptability Curve

Lines represent the probability ranibizumab was cost-effective (y-axis) at willingness-to-pay for quality-adjusted life-year (QALY) gains (x-axis).
study are listed here. Sites are listed in order by number of patients enrolled into the study.

Charlotte Eye, Ear, Nose and Throat Associates, Charlotte, North Carolina; Justin C. Brown, Andrew N. Antoszyk, David B. Brown, Angela K. Price, Sherry L. Fredenberg, Jenna T. Herby, Merri F. Walker, Christina J. Fleming; Ashley A. McClain; Angelia S. Karow; Autumn C. Grupp; Kelly R. Gallagher; Sarah A. Ennis; Donna McClain; Joan P. Mondello; Autumn K. Finch; Kathryn Kimrey; Loraine M. Clark; Claire L. Burris; Lynn V. Vitto; Jeff A. Kuopios; Robin Kerr; Shawn J. Boaj; Susannah J. Held; Uma M. Balasubramaniam; Michael D. McOwen; and Matt Dunlap.

Elman Retina Group, Baltimore, Maryland: Michael J. Elman; Henry A. Leder; JoAnn Starr; Jennifer L. Belz; Charlene K. Putzulo; Dena Y. Salser-Firestone; Perel M. Simpson; Pamela V. Singletary; Jennifer L. Simmons; Teresa Koffey; Dallas R. Sandler; Ashley Davis; Ashley M. Metzger; Peter Sotirov; Terri Cain; and Daniel J. Ketner.

Florida Retina Consultants, Lakeland, Florida: Scott M. Friedman; Nader Moinfar; Kimberly A. Williamson; Karen Sjolom; Katrina L. Dawson; Damanda F. Fagan; Paige N. Walters; Steve Carlson; and Allen McKinnon.

Paducah Retinal Center, Paducah, Kentucky: Carl W. Baker; Ron H. Tifft; Tracey M. Caldwell; Lynnette F. Lambert; Margaret J. Orr; Mary J. Palmer; Tracey R. Martin; Alecia B. Camp; Samantha Kettler; and Tana R. Williams.

Southeast Retina Center, Augusta, Georgia: Dennis M. Marcus; Harinderjit Singh; Siobhan O. Ortiz; Teresa J. Acklie; Michele Woodward; Courtney N. Roberts; Gerri L. Floyd; Judith Hendrickson; Lindsay Allison Foster; Christy Coursey; Virginia Mims; Jared C. Gardner; Kimberly O. Overton; and Ken Ivey.

Retina Research Center, Austin, Texas: Brian A. Berger; Chirag D. Jhaveri; Tori Moore; Ivana Gunderson; Rachel A. Walsh; Ginger J. Manhart; Jenny J. Tracy; Dietrich Riepen; Boris Corak; Chelsi A. Brevecen; Brandon Nguyen; Ryan M. Reid; Ying Ron; Christopher C. Stovall; and Ben Ostrander.

California Retina Consultants, Santa Barbara, California: Dante J. J. Fung; Alessandro A. Castellani; Sarah Fishbein; Michelle S. Hanna; Erica D. Morasse; Gina Hong; Jack Giust; Lisha Wan; Melvin D. Rabena; Sara Esau; Jerry Smith; Kelly Avery; Layne J. Bone; Aimee Walker; Matthew Giust; Nicte L. Ruvacaba; and Aimee H. Shook.

Carolina Retina Center, Columbia, South Carolina: Geoffrey G. Gross; Michael A. Magee; Barron C. Fishburne; Amy M. Flowers; Christen Ochileng; Riley Stroman; Angelique S.A. McDowell; Randall L. Price; and Hunter Matthews.

Texas Retina Associates, Lubbock, Texas: Michelle Shami; Sushma K. Vance; Yolanda Saldivar; Keri S. Neuling; Brenda A. Arrington; Ashaki Meeks; Jennifer R. Garcia; Kayla Blair; Janet Medrano; and Aimee H. Shook.

Carolina Retina Center, Columbia, South Carolina: Geoffrey G. Gross; Michael A. Magee; Barron C. Fishburne; Amy M. Flowers; Christen Ochileng; Riley Stroman; Angelique S.A. McDowell; Randall L. Price; and Hunter Matthews.

Fort Lauderdale Eye Institute, Plantation, Florida: Stuart K. Burgess; Timo M. Lara; Noel H. Pereda; Cindy V. Fernandez; Evelyn Quinchia; Deborah Davis; and Karen Workman.

New England Retina Associates, Trumbull, Connecticut: Nauman A. Chaudhry; Sumit P. Shah; Gregory M. Haffner; Emilia German; Laura A. Fox; JoAnna L. Pelletier; Jennifer M. Matteson; Shannan Moreau; Kristin E. Brown; Michelle Ester; Allison Fontechio; Emily Morse; Marie Grace Laglavia; Justin A. Cocito; Greg McNamara; Stefanie R. DeSantis; Marissa L. Schier; and Angela LaPre.

Valley Retina Institute, McAllen, Texas: Victor Hugo Gonzalez; Nehal R. Patel; Rohit Adyanthaya; Roberto Diaz-Rohena; Deyla Anaya; Crystal A. Alvarez; Ruth Iracheta; Edna E. Cruz; Jessica Rodriguez; Gabriela Zavala; Kethsaly J. Salinas; Tabitha Trevino; Krystle R. Lozano; Karina Miranda; Monica R. Cantu; Maricela Garza; Hector Jasso; Rebecca R. Flores; Rachel Rodriguez; Samuel Alonso; Amanda L. Sandoval; Santos Garza; John Trevino; Lazaro Aguero; and Monique Montemayor.

Retina Northwest, Portland, Oregon: Mark A. Peters; Paul S. Tucek; Michael S. Lee; Colín Ma; Stephen Hobbs; Stephanie L. Hoo; Amanda M. Milliron; Marcia Kopfer; Joe Logan; and Christine Hoerner.

Retinal Consultants of San Antonio, San Antonio, Texas: Calvin E. Mein; R. Gary Lane; Moises A. Chica; Sarah Elizabeth Holy; Lila Kirschbaum; Vanessa D. Martinez; Jaynee Baker; Adriana A. Lopez; Crista G. Kincaid; Sara L. Schlichting; Brenda Naloski; Christopher Sean Wiencek; Elaine Castillo; and Clarisa Murillo.

Vitreo-Retinal Associates, Worcester, Massachusetts: Franklin J. McCabe; Brad J. Baker; Melvyn H. Defrin; Marie V. Lampson; Heather Pratte; Selena A. Baron; and Aurelia S. Borelli.

National Ophthalmic Research Institute, Fort Myers, Florida: A. Thomas Ghamian; Paul A. Raskauskas; Glenn Wing; Ashish G. Sharma; Joseph P. Walker; Eileen Knips (C.P.); Natalie N. Torres; Crystal Y. Peters; Cheryl Ryan; Laura Greenhoe; Cheryl Kiesel; Rebecca J. Youngblood; Anita H. Leslie; Danielle Turnibo; Elinne C. Schoeman; and Raymond K. Kiesel.

Retina Consultants of Houston, Houston, Texas: Charles C. Wykoff; Eric Chen; David M. Brown; Matthew S. Benz; Tien P. Wong; Amy C. Scheller; Richard H. Fish; James J. Major; Rosa Y. Kim; Meredith Lipman; Ashley E. Chancey; Amy Hutson; Cassie Cone; Stacy M. Supapp; Nubia Landaverde; Bellinda A. Almanza; Brenda Dives; Veronica A. Sneed; Becky W. Kegley; Cary A. Stover; and Beau A. Richter.

Loma Linda University Health Care, Department of Ophthalmology, Loma Linda, California: Joseph T. Fan; Mukesh Bhogilal Suthar; Michael E. Rauser; Gisela Santiago; Brandy J. Perez; Liel Marvyn Castellarin; Sarah Fishbein; Michelle S. Hanna; Erica D. Morasse; Gina Hong; Jack Giust; Lisha Wan; Melvin D. Rabena; Sara Esau; Jerry Smith; Kelly Avery; Layne J. Bone; Aimee Walker; Matthew Giust; Nicte L. Ruvacaba; and Aimee H. Shook.

Texas Retina Associates, Lubbock, Texas: Michelle Shami; Sushma K. Vance; Yolanda Saldivar; Keri S. Neuling; Brenda A. Arrington; Ashaki Meeks; Jennifer R. Garcia; Kayla Blair; Janet Medrano; and Aimee H. Shook.

Casey Eye Institute, Portland, Oregon: Andreas K. Lauer; Christina J. Flaxel; Arn D. Lundquist; Mitchell Schain; Shelley A. Hanel; Susan K. Nolte; Shirley D. Ira; Scott R. Pickell; Peter N. Steinkamp; Jocelyn T. Hui; Jordan Barth; Dawn M. Ryan; Chris S. Howell; and Michelle Brix.

Retina Associates of Cleveland, Inc, Beachwood, Ohio: Michael A. Novak; David G. Miller; Llewelyn J. Rado; Jerome F. Schartman; Joseph M. Conyne; Lawrence J. Singerman; Susan C. Rath; Veronica A. Smith; Lorraine Stone; Elizabeth McNamara; Kimberly A. DuBois; Vivian Tanner; Mary A. Ick; Kim Drury; Cecelia Rykina; Trina M. Nitsche; Gregg A. Greenoff; and John C. DuBois.

Family Eye Group, Lancaster, Pennsylvania: Michael R. Pavlica; Noelle S. Matta; Alyson B. Keene; Cristina M. Brubaker; and Christine M. Keefre.
Cost-effectiveness of Intravitreous Ranibizumab vs Panretinal Photocoagulation

Original Investigation Research

Montefiore Medical Center, bronx, new york: umar khalil mian; rebecca l. riemer; louise v. wolf; evelyn koepstein-blatt; erica otoo; irina kathovskaya; christine kim; kevin a. ellerbe; caroline costa; and kenneth boyd.

retinal diagnostic center, campbell, california: armr dessouki; joel m. barra; jessenia perez; rose monahan; kelly to; hienny dang; and tim kelly.

rush university medical center chicago, illinois: mathew w. maccumber; eliene e. tonnier; daniele r. carns; denise l. voskull-marre; evan r. rosenberg; and kisenung wu.

texas retina associates, dallas, texas: gary e. fish; saly arceneaux; karen duignan; nicholas heise; and michael mckniser.

north shore university health system, glenview, illinois: manvi p. maler; mira shилоach; courtney kastler; and lynn waslewski.

retina associates of kentucky, lexington, kentucky: thomas w. stone; john w. kitchens; diana m. holcomb; Jeanne van arsdale; edward a. slade; and michelle buck.

southern california desert retina consultants, palm desert, california: clement k. chan; maziar lalezary; kimberly s. waltner; tiana gonzales; lenise e. myers; and kenneth m. huff.

retinal consultants of arizona, phoenix, arizona: karin n. jama; david t. goldenberg; sachin mehta; schleeen r. dickens; jessica l. miner; heater dunlap; lydia saiz; dayna bartoli; john j. bucci; and rohana yager.

sarasota retina institute, sarasota, florida: melvin chen; peggy a. jelemensky; lara r. raphael; mark sneath; and evelyn inlow.

the retina institute, st. louis, missouri: kevin j. blinder; genny s. noble; rhonda f. weeks; maria a. stuart; brook g. pulliam; kelly e. peeply; lynda k. boyd; timothy l. wright; dana l. gabel; and jarrod wehrmeier.

disclaimer: dr bressler is the editor of JAMA Ophthalmology, but he was not involved in any of the decisions regarding review of the manuscript or its acceptance.

REFERENCES


Incremental Cost-effectiveness of Proliferative Diabetic Retinopathy Treatments
The Certainty of Uncertainty

Steven M. Kymes, PhD

Kenneth J. Arrow, MA, PhD, is not a personality well known to most readers of JAMA Ophthalmology, but his groundbreaking work in economics and mathematics established a radically new paradigm for the social sciences. In 1963, with an article titled “Uncertainty and the Welfare Economics of Medical Care,” he founded an entirely new field of economic research, health economics, and in 1972 he received the Nobel Memorial Prize in Economics reflecting this body of work. More than 5 decades later, this remains the most cited article in the health economic literature, and the annual award for achievement given by the International Health Economic Association is the Kenneth Arrow Award.1

Arrow’s insight was that the lack of perfect knowledge concerning the risk of disease and the efficacy of treatment causes markets that are efficient in distributing products and services to be inefficient in allocating health services.1 Arrow speculated that it was this asymmetry and inefficiency that led European governments to create strict regulatory regimes to seek to improve equity in distribution of health resources by controlling access to services.

Economic evaluation, or modeling of the cost and benefit of health care interventions, is a subdivision of health economics that benefited from Arrow’s insights. Treatment processes are complex, and every value in the mathematical models of treatment developed by economic evaluators has a confidence interval representing uncertainty of the estimate. Thus, a proper economic evaluation includes 2 elements: (1) a point estimate referred to as the net benefit or incremental cost-effectiveness ratio (ICER); and (2) a sensitivity analysis that characterizes the uncertainty of the estimate and the confidence the decision maker can have in the model’s result.

In this issue of JAMA Ophthalmology, Hutton et al2 demonstrated the importance of exploring uncertainty when considering a treatment decision.3 They present a comparison of ranibizumab with panretinal photocoagulation (PRP) for treatment of proliferative diabetic retinopathy. Hutton et al3 examined the use of ranibizumab vs PRP in 2 settings: (1) the patient is experiencing visual impairment from diabetic macular edema, and (2) the patient is not experiencing visual impairment and treatment is used prophylactically. Their analyses yielded an ICER of $55,568 per quality-adjusted life-year (QALY) gained when the patient is experiencing visual impairment and $662,978/QALY when there is no edema-related impairment. The ICER is best interpreted as the value society must surrender to “purchase” a year of “perfect” health (ie, a QALY). Thus, a lower ICER is preferable to a high one, and whether a treatment is cost-effective is determined by comparing the ICER to $150,000. By that standard, Hutton et al found that use of ranibizumab for patients who already experience visual impairment would meet that standard. When clinicians are seeking to prevent progression to visual impairment, PRP would...