Prostaglandin-Induced Iris Color Darkening

An Experimental Model

Gui-Lin Zhan, MD; Carol B. Toris, PhD; Carl B. Camras, MD; Yun-Liang Wang, MD; Laszlo Z. Bito, PhD

Objectives: To determine the role of sympathetic innervation and the effect of topical prostaglandin therapy on iris color in pigmented rabbits.

Methods: Twelve Dutch-belted rabbits underwent unilateral superior cervical ganglionectomy (SCGx) at age 1 to 3 months. A second group of 11 rabbits underwent bilateral SCGx at age 1 month and were treated once or twice daily for 6 to 9 months with 1 drop (about 20 µL) of latanoprost, 0.005%, to one eye and its vehicle to the contralateral eye. Standardized color photographs of the iris of each eye were taken at 1- to 2-month intervals for 6 to 10 months and evaluated by 4 to 6 observers in a masked fashion.

Results: At 8 to 10 months after unilateral SCGx, 11 of 12 rabbits showed definite heterochromia, with the lighter-colored iris on the SCGx side. Of the 11 rabbits that underwent bilateral SCGx and unilateral latanoprost treatment, 9 showed heterochromia at 6 to 9 months, with the darker-colored iris on the latanoprost-treated side.

Conclusions: These results demonstrate that sympathetic innervation is required for age-related, physiologic darkening of iris color in rabbits, that prostaglandins may compensate for sympathetic denervation to produce darkening in SCGx eyes, and that this model may be useful to study prostaglandin-induced iris color change.


Recent reports demonstrate that with long-term latanoprost treatment, some patients have darkening of iris color and eyelashes. In those patients exhibiting iris color changes, the baseline iris color was described as green-brown, yellow-brown, or blue-gray-brown, with a darker color around the sphincter than in the periphery. Latanoprost treatment caused darkening of the lighter-colored peripheral iris, resulting in a more uniformly brown color. Iris color darkening was not observed in any patient who had a uniformly blue or brown iris color at baseline.

The precise mechanism of this iris color darkening is unknown. Iris color darkening occurs in cynomolgus monkey eyes treated with relatively high doses of latanoprost, a prostaglandin (PG) F2α analog, or with any of the naturally occurring PGs. Arachidonic acid products that are known to stimulate growth and possibly melanogenesis in normal human epidermal melanocytes in tissue culture include PGE2, PGD2, leukotriene B4, leukotriene C4, leukotriene E4, thromboxane B2, and 12-hydroxyeicosatetraenoic acid. On the other hand, PGE1, PGF2α, and 6-keto-PGF1α do not exhibit a stimulatory effect. Iris color is determined by the amount of melanin (melanosomes) within iris stromal melanocytes, not by the number of melanocytes. A uniformly blue iris has as many stromal melanocytes as a dark brown iris. Prolonged PG treatment has been shown to increase the eumelanin content of the melanocytes, but not the number of melanocytes in monkey irides.

Neurohumoral input, including sympathetic innervation, is known to influence iris color. Sympathetic innervation plays a role in the development of normal pigmentation of the iris at birth. A hallmark of unilateral congenital Horner syndrome is iris heterochromia, with a lighter-colored iris on the side of the sympathetic deficiency. Less well known is the observation that acquired Horner syndrome also can produce a lightening of iris color, suggesting that sympathetic innervation may be required to maintain normal iridal pigmentation, even in adults. Unilateral sympathectomy in rabbits, regardless of age, is known to produce het-

From the Department of Ophthalmology, University of Nebraska Medical Center, Omaha (Drs Zhan, Toris, Camras, and Wang); and the Department of Ophthalmology, Columbia University, New York, NY (Dr Bito). Drs Bito and Camras are consultants to Pharmacia and Upjohn, the company that developed latanoprost. Dr Bito has a proprietary interest in the use of prostaglandins for the medical management of glaucoma through patents he has assigned to Columbia University, New York, NY, according to the policies of the US Public Health Service, National Institutes of Health, Bethesda, Md, which supported the research program of his laboratory in this field between 1970 and 1989.
eurochromia, with a lighter-colored iris on the sympathetic nerve side. Also, topical application of an α-adrenergic blocker results in iris heterochromia in young rabbits.

An interaction between PGs, adrenergic drugs, and the sympathetic nervous system has been reported previously. Cyclooxygenase inhibitors suppress the ocular hypotensive effects of adrenergic agents and suppress the reduction in intraocular pressure normally seen following acute superior cervical ganglionectomy. In toxicology studies, none of the hundreds of pigmented rabbits with intact sympathetic innervation of the iris that were treated with high doses of latanoprost for more than a year demonstrated darkening of iris color (Johan Stjernschantz, MD, PhD, Pharmacia & Upjohn, Kalamazoo, Mich, unpublished data, 1994). This study examines the relationship of sympathetic denervation and latanoprost treatment to the development of iris hyperpigmentation in a rabbit model.

At 8 to 10 months after unilateral SCGx, 11 of the 12 rabbits in group 1 showed definite heterochromia, with the lighter-colored iris on the SCGx side, as determined unanimously by the masked observers (Figure). The heterochromia was observed as soon as 2 weeks after SCGx in the youngest rabbits.

Of the 11 rabbits in group 2 that underwent bilateral SCGx and unilateral latanoprost treatment, 10 showed some degree of heterochromia after 6 months of treatment: 5 rabbits, strong degree of certainty; 3 rabbits, moderate; and 2 rabbits, mild (Table). The darker eye was found to be the latanoprost-treated eye in 9 of the 10 rabbits (Figure). The only rabbit that received latanoprost in the eye thought to be lighter in color received a heterochromia rating with a mild degree of certainty. The 1 rabbit that did not show heterochromia was the only 1 of the 11 with an incomplete SCGx, as demonstrated by pupillary testing with cocaine hydrochloride, hydroxyamphetamine hydrobromide, and phenylephrine hydrochloride.

The heterochromia produced after unilateral SCGx in these pigmented rabbits (group 1) confirmed the results of previous studies and is consistent with the heterochromia that is observed clinically in patients with Horner syndrome, especially when it occurs congenitally. Iris color undergoes changes during aging and appears to be influenced by neurohumoral factors. The lightening of iris color in some patients who develop acquired Horner syndrome as adults suggests that sympathetic tone contributes to maintenance of iris color in adulthood.

The interaction between PGs, the sympathetic nervous system, and adrenergic agonists has been previously delineated. In clinical and/or animal studies, cyclooxygenase inhibitors prevented the ocular hypotensive effects of adrenergic agents (reviewed by Cunrmas and Podos, 1989) and inhibited the intraocular pressure decrease after acute superior cervical ganglionectomy. With intact sympathetic innervation of the iris, high doses of latanoprost for more than a year do not result in darkening of iris color in pigmented rabbits (Johan Stjernschantz, MD, PhD, Pharmacia & Upjohn, Kalamazoo, unpublished data, 1994). However, the results...
of the present study suggest that PGs may act in the absence of sympathetic tone by stimulating melanogenesis to darken the color of irides that are lighter following sympathectomy.

Iris stromal melanocytes in the iris periphery are preferentially innervated by the sympathetic nerve endings, whereas those around the sphincter of the iris tend to be cholinergically innervated. Iris freckles/nevi are not sympathetically innervated and therefore do not fade in Horner syndrome. If PGs were substituting for deficient sympathetic innervation, the peripheral rather than more central iris stroma would be expected to darken, which is consistent with the clinical observations. Furthermore, latanoprost-induced darkening of nevi/freckles would not be expected and in fact does not occur. Among the hundreds of eyes treated with latanoprost that have been carefully evaluated photographically in clinical studies, none of the iris freckles/nevi have demonstrated any change. Even large iris nevi observed at baseline do not change during the course of 1 year of treatment with latanoprost.

Darkening of the iris after topical latanoprost treatment does not appear to be due to proliferation of melanocytes. In our experimental rabbit model, histopathologic studies are being performed to determine whether the iris color darkening is due to proliferation of melanocytes or an increase in melanin synthesis within the melanocytes. The model of sympathetically denervated rabbit eyes may be useful to further study the mechanism of PG-induced iris color change.

Accepted for publication April 16, 1998.

This study was supported in part by a grant from Pharmacia & Upjohn, Kalamazoo, Mich; by a challenge grant from Research to Prevent Blindness Inc, New York, NY; and by the Gifford Laboratory funds, University of Nebraska Medical Center, Omaha.

Presented in part at the 72nd annual meeting of the Association for Research in Vision and Ophthalmology, Fort.
Lauderdale, Fla, May 17, 1995. This article was submitted in part by Dr Camras as a small portion of a thesis to the American Ophthalmologic Society, Durham, NC.

Reprints: Carl B. Camras, MD, Department of Ophthalmology, University of Nebraska Medical Center, 600 S 42nd St, Omaha, NE, 68198-5540 (Dr Camras).

REFERENCES