Albert M. Potts, MD, PhD (1914-2001)

Albert M. Potts, professor of ophthalmology at the University of Chicago (Chicago, Ill) and internationally respected pioneer in ophthalmic research (Figure 1 and Figure 2), died of myelofibrosis at his home in Tucson, Ariz, at the age of 86 years. His remarkable professional career was characterized by a fascination with vision; a commitment to the highest standards of scientific research, clinical care, and education; and a creative integration of science, technology, and medicine.

At the professional level, Bert was the quintessential academic ophthalmologist, and on the personal level, he was the gentlest of gentlemen. He had an uncanny knack for being both a friend and a mentor to his students and followers, and he was extraordinarily skilled at imparting to them his keen senses of professional integrity, clinical excellence, and scientific rigor. One could not have come into contact with Bert Potts without becoming a better person for it. To know him as a friend was to benefit personally, and to have him as a teacher was to thrive academically.

Bert's early education included participation in an accelerated high school program at Baltimore City College (Baltimore, Md). This special program fostered a lifelong love of language, literature, art, and science. He graduated with a degree in chemistry from the Johns Hopkins University in 1934 at the age of 20 years, and he received his PhD in biochemistry from the University of Chicago in 1938. He earned his MD from Western Reserve University (now Case Western Reserve University, Cleveland, Ohio) in 1948.

Bert worked on the Manhattan Project during World War II, exploring the potential health risks of radioactivity on humans, and studying the effects of inhalation of radioactive particles, leading to the design of early prototypes of equipment to protect workers. While working toward his MD and residency in ophthalmology at Western Reserve University and raising 3 small children with his wife, Esther, he set up and directed an eye research laboratory, doing basic research on the toxicology of the eye, with a special interest in methyl alcohol poisoning. In 1959, he accepted a position at the University of Chicago as professor of ophthalmology and director of ophthalmic research. The focus of his research there involved continuation of basic research on the physiology of the eye, with research and particular studies on the cornea and the retina. He was an early pioneer in the application of electrical measurements of the physiology of these important areas.

In addition to his knowledge of science and medicine, Bert Potts was intrigued with emerging technologies, and he was quick to recognize their potential application to his fields of interest. In the 1940s, he developed and applied column chromatography to separate different chemical compounds; in the 1950s, he designed and developed the television ophthalmoscope to assist in eye research and teaching ophthalmology; and in the 1960s, he and his associates were able to harness computer systems to accurately count and characterize more than 1 million fibers in the optic nerve.

During his years in Chicago, Bert Potts established a research program, mentoring a group of residents who were interested in conducting research in vision while working toward a PhD degree and serving their ophthalmology residencies. Former students from this program have expressed gratitude for his leadership, mentoring, and availability as a stellar role model. The skills and training, the attention to scientific detail, and the lucid way of thinking they learned from Dr Potts have served them well in their careers, enabling them to perform creative research throughout their lifetimes. Several of these graduates now head ophthalmology departments at major university medical centers.

In 1975, Dr Potts was recruited to head a new eye institute at the University of Louisville (Louisville, Ky), where he served as chairman of the Department of Ophthalmology from 1975 to 1983. In Louisville, he supervised research on electron microscopy of the eye. After moving to Tucson in 1984 at the age of 70 years, he was asked to serve as acting head of the Department of Ophthalmology at the University of Arizona. After his retirement in 1985, he began work on a project using new optical disk technology to develop a diagnostic program for emergency department physicians dealing with eye emergencies.

Bert was an active member of the Association for Research in Vision and Ophthalmology (ARVO), serving as its president in 1974. He was both active and enthusiastic about his membership in the International Society of Clinical Electro-Retinography and was well re-
spected within this international association. He was also a member of the International Society for Clinical Electrophysiology of Vision and served as vice president for the western hemisphere from 1978 to 1984.

Dr Potts authored more than 175 articles and books that attest to his commitment to research and also to the depth and breadth of his fascination with vision. His chapter on the toxicology of the eye appears in Klaassen’s toxicology text, Casarett and Doull’s Toxicology: The Basic Science of Poison. Bert edited The Assessment of Visual Function, and his book The World’s Eye explores vision from an anthropological perspective, examining the myths, meanings, and symbolism of the eye across cultures and throughout history. He also studied and wrote about the history of medicine, and in addition to his professional interests, Bert’s personal fascinations included photography, astronomy, chess, jewelry making, and collecting ancient Greek and Roman coins.

Bert’s wife of 62 years, Esther Potts, and their 3 children and 2 grandchildren survive him. Contributions in his memory can be made to the Albert M. Potts Fund or to the University of Chicago. This fund, an award for pursuit of research in ophthalmology, will annually select an outstanding ophthalmology resident with an interest in research and provide funds for attendance at ARVO meetings. Contributions should be sent to the attention of Sara Ummel, Office of Development, University of Chicago Medical Center, 5841 S Maryland Ave, MC1115, Chicago, IL 60637.

Steven Kramer, MD, PhD
San Francisco, Calif

100 Years Ago in the ARCHIVES

A look at the past...

The history presented by this case, that of retinal separation followed by acute attacks of glaucoma, is characteristic of intraocular growths. The features of special interest are the long interval, two years, during which the eye was quiet, the occurrence of complete corneal infiltration, and finally, the spontaneous rupture of the cornea.